Suppr超能文献

多重马尔可夫转移矩阵法:通过多次模拟获得平稳概率分布。

Multiple Markov transition matrix method: obtaining the stationary probability distribution from multiple simulations.

作者信息

Sakuraba Shun, Kitao Akio

机构信息

Graduate School of Frontier Sciences, The University of Tokyo, Japan.

出版信息

J Comput Chem. 2009 Sep;30(12):1850-8. doi: 10.1002/jcc.21186.

Abstract

We herein propose the multiple Markov transition matrix method (MMMM), an algorithm by which to estimate the stationary probability distribution from independent multiple molecular dynamics simulations with different Hamiltonians. Applications to the potential of mean force calculation in combination with the umbrella sampling method are presented. First, the performance of the MMMM is examined in the case of butane. Compared with the weighted histogram analysis method (WHAM), the MMMM has an advantage with respect to the reasonable evaluation of the stationary probability distribution even from nonequilibrium trajectories. This method is then applied to Met-enkephalin nonequilibrium simulation.

摘要

我们在此提出多重马尔可夫转移矩阵方法(MMMM),这是一种通过对具有不同哈密顿量的独立多重分子动力学模拟来估计稳态概率分布的算法。本文展示了该方法与伞形抽样法相结合在平均力势计算中的应用。首先,在丁烷的案例中检验了MMMM的性能。与加权直方图分析方法(WHAM)相比,即使从非平衡轨迹出发,MMMM在合理评估稳态概率分布方面具有优势。然后将该方法应用于甲硫氨酸脑啡肽的非平衡模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验