Strukova Elena N, Smirnova Maria V, Vostrov Sergey N, Lubenko Irene Y, Firsov Alexander A, Zinner Stephen H, Portnoy Yury A
Department of Pharmacokinetics & Pharmacodynamics, Gause Institute of New Antibiotics, Russian Academy of Medical Sciences, Moscow, Russia.
Int J Antimicrob Agents. 2009 Mar;33(3):251-4. doi: 10.1016/j.ijantimicag.2008.09.006. Epub 2008 Dec 17.
To describe the relationship between the ratio of the 24-h area under the concentration-time curve (AUC(24)) to minimum inhibitory concentration (MIC) as well as the effect of linezolid on Staphylococcus aureus, the killing kinetics of three S. aureus strains was studied by in vitro simulation of 5-day antibiotic dosing over a wide range of AUC(24)/MIC ratios. Similarly susceptible meticillin-resistant S. aureus ATCC 43300 and S. aureus 479 and vancomycin-intermediate S. aureus ATCC 700699 (Mu50) at a starting inoculum of 10(8) colony-forming units (CFU)/mL were exposed to multiple-dose pharmacokinetics of twice-daily linezolid for 5 days. The simulated AUC(24)/MIC ratios varied from 30 h to 1200 h (S. aureus ATCC 43300), from 30h to 600 h (S. aureus 479) and from 50h to 400 h (S. aureus ATCC 700699). The cumulative antimicrobial effect was expressed by its intensity (I(E)) measured from the start of treatment to the time after the last antibiotic dose when numbers of antibiotic-exposed bacteria reached >or=10(8)CFU/mL. With each organism, bacterial re-growth followed a pronounced reduction of the starting inoculum that occurred at each simulated AUC(24)/MIC ratio except for the lowest value (30 h). This reduction was AUC(24)/MIC-dependent: the minimum numbers of surviving organisms decreased with increasing AUC(24)/MIC ratios. A sigmoid relationship was established between I(E) and the simulated AUC(24)/MIC ratio. This relationship was bacterial strain-independent; a logistic function fits the combined data with r(2)=0.95. The established AUC(24)/MIC-I(E) relationship is useful to predict the antistaphylococcal effects of linezolid at clinically attainable AUC(24)/MIC values.
为描述24小时浓度-时间曲线下面积(AUC(24))与最低抑菌浓度(MIC)的比值关系以及利奈唑胺对金黄色葡萄球菌的作用,通过在广泛的AUC(24)/MIC比值范围内进行5天抗生素给药的体外模拟,研究了三株金黄色葡萄球菌的杀菌动力学。同样对初始接种量为10(8) 菌落形成单位(CFU)/mL的甲氧西林耐药的敏感金黄色葡萄球菌ATCC 43300、金黄色葡萄球菌479以及万古霉素中介的金黄色葡萄球菌ATCC 700699(Mu50),给予每日两次利奈唑胺的多剂量药代动力学,持续5天。模拟的AUC(24)/MIC比值范围为30小时至1200小时(金黄色葡萄球菌ATCC 43300)、30小时至600小时(金黄色葡萄球菌479)以及50小时至400小时(金黄色葡萄球菌ATCC 700699)。累积抗菌效果通过其强度(I(E))来表示,该强度是从治疗开始至最后一剂抗生素给药后,抗生素暴露细菌数量达到≥10(8)CFU/mL时的时间来测量。对于每种菌株,除了最低值(30小时)外,在每个模拟的AUC(24)/MIC比值下,细菌再生长均伴随着起始接种量的显著减少。这种减少与AUC(24)/MIC相关:存活生物体的最小数量随着AUC(24)/MIC比值的增加而减少。在I(E)与模拟的AUC(24)/MIC比值之间建立了S形关系。这种关系与菌株无关;一个逻辑函数拟合合并数据,r(2)=0.95。所建立的AUC(24)/MIC-I(E)关系有助于预测利奈唑胺在临床可达到的AUC(24)/MIC值时的抗葡萄球菌效果。