Hoekstra Ryan M, Dibrell Marcelle M, Weaver Michael N, Nelsen Stephen F, Zink Jeffrey I
Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA.
J Phys Chem A. 2009 Jan 15;113(2):456-63. doi: 10.1021/jp807940h.
The lowest energy optical electronic absorption band of the three-chromophore system tris(4-bromophenyl)amine radical cation is analyzed. The lowest energy electronic transition corresponds to a p-bromophenyl orbital to nitrogen p orbital transition that places the positive charge on three equivalent p-bromophenyl chromophores. The excited electronic state is an example of excited-state mixed valence (ESMV), and the spectrum is interpreted using two ESMV models. The simplest model invokes the concept of an "effective coupling" between the three identical chromophores with an excited-state energy splitting equal to three times the coupling. A more accurate model, the "neighboring orbital model", utilizes the coupling between the bridge's and charge-bearing unit's orbitals closest in energy. The three-chromophore system provides a striking illustration of the failure of an effective coupling term to account for ESMV splitting. The calculated relative energies of the diabatic and adiabatic states are different, but the calculated absorption spectra of the two models show nearly identical vibrational fine structure. Resonance Raman data and the time-dependent theory of electronic and resonance Raman spectroscopies are used to calculate the spectra.
对三发色团体系三(4-溴苯基)胺自由基阳离子的最低能量光学电子吸收带进行了分析。最低能量的电子跃迁对应于从对溴苯基轨道到氮p轨道的跃迁,该跃迁将正电荷分布在三个等价的对溴苯基发色团上。激发电子态是激发态混合价(ESMV)的一个例子,并且使用两个ESMV模型对光谱进行了解释。最简单的模型引入了三个相同发色团之间“有效耦合”的概念,其激发态能量分裂等于耦合的三倍。一个更精确的模型,即“相邻轨道模型”,利用了能量最接近的桥键轨道和带电荷单元轨道之间的耦合。三发色团体系为有效耦合项无法解释ESMV分裂提供了一个显著例证。计算得到的非绝热态和绝热态的相对能量不同,但两个模型计算得到的吸收光谱显示出几乎相同的振动精细结构。利用共振拉曼数据以及电子和共振拉曼光谱的含时理论来计算光谱。