Matsuda Takahisa, Zhai Peiyong, Maejima Yasuhiro, Hong Chull, Gao Shumin, Tian Bin, Goto Kazumichi, Takagi Hiromitsu, Tamamori-Adachi Mimi, Kitajima Shigetaka, Sadoshima Junichi
Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20900-5. doi: 10.1073/pnas.0808315106. Epub 2008 Dec 23.
Glycogen synthase kinase-3 (GSK-3) is a master regulator of growth and death in cardiac myocytes. GSK-3 is inactivated by hypertrophic stimuli through phosphorylation-dependent and -independent mechanisms. Inactivation of GSK-3 removes the negative constraint of GSK-3 on hypertrophy, thereby stimulating cardiac hypertrophy. N-terminal phosphorylation of the GSK-3 isoforms GSK-3alpha and GSK-3beta by upstream kinases (e.g., Akt) is a major mechanism of GSK-3 inhibition. Nonetheless, its role in mediating cardiac hypertrophy and failure remains to be established. Here we evaluated the role of Serine(S)21 and S9 phosphorylation of GSK-3alpha and GSK-3beta in the regulation of cardiac hypertrophy and function during pressure overload (PO), using GSK-3alpha S21A knock-in (alphaKI) and GSK-3beta S9A knock-in (betaKI) mice. Although inhibition of S9 phosphorylation during PO in the betaKI mice attenuated hypertrophy and heart failure (HF), inhibition of S21 phosphorylation in the alphaKI mice unexpectedly promoted hypertrophy and HF. Inhibition of S21 phosphorylation in GSK-3alpha, but not of S9 phosphorylation in GSK-3beta, caused phosphorylation and down-regulation of G1-cyclins, due to preferential localization of GSK-3alpha in the nucleus, and suppressed E2F and markers of cell proliferation, including phosphorylated histone H3, under PO, thereby contributing to decreases in the total number of myocytes in the heart. Restoration of the E2F activity by injection of adenovirus harboring cyclin D1 with a nuclear localization signal attenuated HF under PO in the alphaKI mice. Collectively, our results reveal that whereas S9 phosphorylation of GSK-3beta mediates pathological hypertrophy, S21 phosphorylation of GSK-3alpha plays a compensatory role during PO, in part by alleviating the negative constraint on the cell cycle machinery in cardiac myocytes.
糖原合酶激酶-3(GSK-3)是心肌细胞生长和死亡的主要调节因子。GSK-3通过磷酸化依赖性和非依赖性机制被肥厚性刺激所失活。GSK-3的失活消除了GSK-3对肥厚的负性抑制,从而刺激心肌肥厚。上游激酶(如Akt)对GSK-3亚型GSK-3α和GSK-3β的N端磷酸化是GSK-3抑制的主要机制。尽管如此,其在介导心肌肥厚和心力衰竭中的作用仍有待确定。在此,我们使用GSK-3α S21A基因敲入(αKI)和GSK-3β S9A基因敲入(βKI)小鼠,评估了GSK-3α和GSK-3β的丝氨酸(S)21和S9磷酸化在压力超负荷(PO)期间对心肌肥厚和功能调节中的作用。尽管在PO期间βKI小鼠中S9磷酸化的抑制减轻了肥厚和心力衰竭(HF),但αKI小鼠中S21磷酸化的抑制却意外地促进了肥厚和HF。GSK-3α中S21磷酸化的抑制而非GSK-3β中S9磷酸化的抑制导致G1-细胞周期蛋白的磷酸化和下调,这归因于GSK-3α在细胞核中的优先定位,并在PO下抑制了E2F和细胞增殖标志物,包括磷酸化组蛋白H3,从而导致心脏中心肌细胞总数减少。通过注射携带具有核定位信号的细胞周期蛋白D1的腺病毒来恢复E2F活性,可减轻αKI小鼠在PO下的HF。总体而言,我们的结果表明,虽然GSK-3β的S9磷酸化介导病理性肥厚,但GSK-3α的S21磷酸化在PO期间发挥补偿作用,部分是通过减轻对心肌细胞中细胞周期机制的负性抑制。