Suppr超能文献

自然图像统计与低复杂度特征选择。

Natural image statistics and low-complexity feature selection.

作者信息

Vasconcelos Manuela, Vasconcelos Nuno

机构信息

Statistical Visual Computing Laboratory, UCSD, La Jolla, CA 92093, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2009 Feb;31(2):228-44. doi: 10.1109/TPAMI.2008.77.

Abstract

Low-complexity feature selection is analyzed in the context of visual recognition. It is hypothesized that high-order dependences of bandpass features contain little information for discrimination of natural images. This hypothesis is characterized formally by the introduction of the concepts of conjunctive interference and decomposability order of a feature set. Necessary and sufficient conditions for the feasibility of low-complexity feature selection are then derived in terms of these concepts. It is shown that the intrinsic complexity of feature selection is determined by the decomposability order of the feature set and not its dimension. Feature selection algorithms are then derived for all levels of complexity and are shown to be approximated by existing information-theoretic methods, which they consistently outperform. The new algorithms are also used to objectively test the hypothesis of low decomposability order through comparison of classification performance. It is shown that, for image classification, the gain of modeling feature dependencies has strongly diminishing returns: best results are obtained under the assumption of decomposability order 1. This suggests a generic law for bandpass features extracted from natural images: that the effect, on the dependence of any two features, of observing any other feature is constant across image classes.

摘要

在视觉识别的背景下分析低复杂度特征选择。假设带通特征的高阶依赖性对于自然图像的辨别几乎不包含信息。通过引入特征集的联合干扰和可分解性阶数的概念,正式描述了这一假设。然后根据这些概念推导出低复杂度特征选择可行性的充要条件。结果表明,特征选择的内在复杂度由特征集的可分解性阶数而非其维度决定。接着针对所有复杂度级别推导了特征选择算法,并表明它们可以由现有的信息论方法近似,且始终优于这些方法。新算法还通过比较分类性能来客观地检验低可分解性阶数的假设。结果表明,对于图像分类,对特征依赖性进行建模的收益呈急剧递减趋势:在可分解性阶数为1的假设下可获得最佳结果。这表明了从自然图像中提取的带通特征的一般规律:观察任何其他特征对任意两个特征依赖性的影响在图像类别之间是恒定的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验