Suppr超能文献

独立分类器集成中的基于统计实例的剪枝

Statistical instance-based pruning in ensembles of independent classifiers.

作者信息

Hernández-Lobato Daniel, Martínez-Muñoz Gonzalo, Suárez Alberto

机构信息

Computer Science Department, Universidad Autónoma de Madrid, Cantoblanco, Spain.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2009 Feb;31(2):364-9. doi: 10.1109/TPAMI.2008.204.

Abstract

The global prediction of a homogeneous ensemble of classifiers generated in independent applications of a randomized learning algorithm on a fixed training set is analyzed within a Bayesian framework. Assuming that majority voting is used, it is possible to estimate with a given confidence level the prediction of the complete ensemble by querying only a subset of classifiers. For a particular instance that needs to be classified, the polling of ensemble classifiers can be halted when the probability that the predicted class will not change when taking into account the remaining votes is above the specified confidence level. Experiments on a collection of benchmark classification problems using representative parallel ensembles, such as bagging and random forests, confirm the validity of the analysis and demonstrate the effectiveness of the instance-based ensemble pruning method proposed.

摘要

在贝叶斯框架内分析了在固定训练集上通过随机学习算法的独立应用生成的分类器同构集合的全局预测。假设使用多数投票,通过仅查询分类器的一个子集,就可以在给定的置信水平下估计整个集合的预测。对于需要分类的特定实例,当考虑剩余投票时预测类别不会改变的概率高于指定的置信水平时,可以停止对集合分类器的轮询。使用代表性并行集合(如装袋和随机森林)对一组基准分类问题进行的实验证实了分析的有效性,并证明了所提出的基于实例的集合剪枝方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验