Suppr超能文献

不确定性下环境系统管理的灵活区间混合整数双无限规划

Flexible interval mixed-integer bi-infinite programming for environmental systems management under uncertainty.

作者信息

He L, Huang G H, Lu H W

机构信息

Centre for Studies in Energy and Environment, University of Regina, Regina, SK, Canada.

出版信息

J Environ Manage. 2009 Apr;90(5):1802-13. doi: 10.1016/j.jenvman.2008.11.006. Epub 2008 Dec 27.

Abstract

A number of inexact programming methods have been developed for municipal solid waste management under uncertainty. However, most of them do not allow the parameters in the objective and constraints of a programming problem to be functional intervals (i.e., the lower and upper bounds of the intervals are functions of impact factors). In this study, a flexible interval mixed-integer bi-infinite programming (FIMIBIP) method is developed in response to the above concern. A case study is also conducted; the solutions are then compared with those obtained from interval mixed-integer bi-infinite programming (IMIBIP) and fuzzy interval mixed-integer programming (FIMIP) methods. It is indicated that the solutions through FIMIBIP can provide decision support for cost-effectively diverting municipal solid waste, and for sizing, timing and siting the facilities' expansion during the entire planning horizon. These schemes are more flexible than those identified through IMIBIP since the tolerance intervals are introduced to measure the level of constraints satisfaction. The FIMIBIP schemes may also be robust since the solutions are "globally-optimal" under all scenarios caused by the fluctuation of gas/energy prices, while the conventional ones are merely "locally-optimal" under a certain scenario.

摘要

针对不确定性条件下的城市固体废弃物管理,人们已经开发出了多种非精确规划方法。然而,其中大多数方法并不允许规划问题的目标函数和约束条件中的参数为函数区间(即区间的上下界是影响因素的函数)。针对上述问题,本研究开发了一种灵活区间混合整数双无限规划(FIMIBIP)方法。同时还进行了案例研究,并将所得结果与区间混合整数双无限规划(IMIBIP)方法和模糊区间混合整数规划(FIMIP)方法的结果进行了比较。结果表明,通过FIMIBIP得到的方案能够为城市固体废弃物的经济有效转移以及在整个规划期内设施扩建的规模确定、时间安排和选址提供决策支持。由于引入了容差区间来衡量约束条件的满足程度,这些方案比通过IMIBIP确定的方案更加灵活。FIMIBIP方案可能也具有鲁棒性,因为在由气体/能源价格波动引起的所有情景下,其解都是“全局最优”的,而传统方案仅在特定情景下是“局部最优”的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验