Suppr超能文献

快速旋转湍流中的离散性和分辨率效应。

Discreteness and resolution effects in rapidly rotating turbulence.

作者信息

Bourouiba Lydia

机构信息

McGill University, Montréal, Québec H3A 2K6, Canada.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Nov;78(5 Pt 2):056309. doi: 10.1103/PhysRevE.78.056309. Epub 2008 Nov 25.

Abstract

Rotating turbulence is characterized by the nondimensional Rossby number Ro, which is a measure of the strength of the Coriolis term relative to that of the nonlinear term. For rapid rotation (Ro-->0) , nonlinear interactions between inertial waves are weak, and the theoretical approaches used for other weak (wave) turbulence problems can be applied. The important interactions in rotating turbulence at small Ro become those between modes satisfying the resonant and near-resonant conditions. Often, discussions comparing theoretical results and numerical simulations are questioned because of a speculated problem regarding the discreteness of the modes in finite numerical domains versus continuous modes in unbounded continuous theoretical domains. This argument finds its origin in a previous study of capillary waves, for which resonant interactions have a very particular property that is not shared by inertial waves. This possible restriction on numerical simulations of rotating turbulence to moderate Ro has never been quantified. In this paper, we inquire whether the discreteness effects observed in capillary wave turbulence are also present in inertial wave turbulence at small Ro. We investigate how the discreteness effects can affect the setup and interpretation of studies of rapidly rotating turbulence in finite domains. In addition, we investigate how the resolution of finite numerical domains can affect the different types of nonlinear interactions relevant for rotating inertial wave turbulence theories. We focus on Rossby numbers ranging from 0 to 1 and on periodic domains due to their relevance to direct numerical simulations of turbulence. We find that discreteness effects are present for the system of inertial waves for Rossby numbers comfortably smaller than those used in the most recent numerical simulations of rotating turbulence. We use a kinematic model of the cascade of energy via selected types of resonant and near-resonant interactions to determine the threshold of Ro below which discreteness effects become important enough to render an energy cascade impossible.

摘要

旋转湍流的特征是无量纲罗斯比数Ro,它衡量科里奥利项相对于非线性项的强度。对于快速旋转(Ro→0),惯性波之间的非线性相互作用较弱,可以应用用于其他弱(波)湍流问题的理论方法。在小Ro的旋转湍流中,重要的相互作用变成满足共振和近共振条件的模式之间的相互作用。通常,由于推测有限数值域中的模式离散性与无界连续理论域中的连续模式之间存在问题,比较理论结果和数值模拟的讨论受到质疑。这一论点源于之前对毛细波的研究,对于毛细波,共振相互作用具有惯性波所没有的非常特殊的性质。旋转湍流数值模拟对中等Ro的这种可能限制从未被量化。在本文中,我们探究在小Ro的惯性波湍流中是否也存在毛细波湍流中观察到的离散效应。我们研究离散效应如何影响有限域中快速旋转湍流研究的设置和解释。此外,我们研究有限数值域的分辨率如何影响与旋转惯性波湍流理论相关的不同类型的非线性相互作用。由于其与湍流直接数值模拟的相关性,我们关注罗斯比数范围从0到1以及周期性域。我们发现,对于罗斯比数比最近旋转湍流数值模拟中使用的罗斯比数小得多的惯性波系统,离散效应是存在的。我们使用一个通过选定类型的共振和近共振相互作用的能量级联运动学模型来确定Ro的阈值,低于该阈值离散效应变得足够重要以至于使能量级联不可能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验