Suppr超能文献

氦原子的自由互补波函数对薛定谔方程的满足程度有多精确?

How accurately does the free complement wave function of a helium atom satisfy the Schrödinger equation?

作者信息

Nakashima Hiroyuki, Nakatsuji Hiroshi

机构信息

Quantum Chemistry Research Institute, JST, CREST, Kyodai Katsura Venture Plaza 106, Goryo Oohara 1-36, Kyoto 615-8245, Japan.

出版信息

Phys Rev Lett. 2008 Dec 12;101(24):240406. doi: 10.1103/PhysRevLett.101.240406.

Abstract

The local energy defined by Hpsi/psi must be equal to the exact energy E at any coordinate of an atom or molecule, as long as the psi under consideration is exact. The discrepancy from E of this quantity is a stringent test of the accuracy of the calculated wave function. The H-square error for a normalized psi, defined by sigma2 identical with psi|(H-E)2|psi, is also a severe test of the accuracy. Using these quantities, we have examined the accuracy of our wave function of a helium atom calculated using the free complement method that was developed to solve the Schrödinger equation. Together with the variational upper bound, the lower bound of the exact energy calculated using a modified Temple's formula ensured the definitely correct value of the helium fixed-nucleus ground state energy to be -2.903,724,377,034,119,598,311,159,245, 194,4 a.u., which is correct to 32 digits.

摘要

只要所考虑的ψ是精确的,由Hψ/ψ定义的局部能量在原子或分子的任何坐标处都必须等于精确能量E。该量与E的偏差是对计算出的波函数准确性的严格检验。对于归一化的ψ,由σ²≡ψ|(H - E)²|ψ定义的H²误差也是对准确性的严格检验。利用这些量,我们检验了使用为求解薛定谔方程而开发的自由互补方法计算的氦原子波函数的准确性。结合变分上限,使用修正的坦普尔公式计算出的精确能量下限确保了氦固定核基态能量的确定正确值为-2.9037243770341195983111592451944原子单位,精确到32位数字。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验