Xiong Yongmin, Zhou Yanwen, Jarrett Harry W
Key Laboratory of Environment and Genes Related to Disease, Department of Public Health, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi Province, People's Republic of China.
J Cell Physiol. 2009 May;219(2):402-14. doi: 10.1002/jcp.21684.
Previously, we showed that laminin-binding to the dystrophin glycoprotein complex (DGC) of skeletal muscle causes a heterotrimeric G-protein (Galphabetagamma) to bind, changing the activation state of the Gsalpha subunit. Others have shown that laminin-binding to the DGC also leads to Akt activation. Gbetagamma, released when Gsalpha is activated, is known to bind phosphatidylinositol-3-kinase (PI3K), which activates Akt in other cells. Here, we investigate whether muscle Akt activation results from Gbetagamma, using immunoprecipitation and immunoblotting, and purified Gbetagamma. In the presence of laminin, PI3K-binding to the DGC increases and Akt becomes phosphorylated and activated (pAkt), and glycogen synthase kinase is phosphorylated. Antibodies, which specifically block laminin-binding to alpha-dystroglycan, prevent PI3K-binding to the DGC. Purified bovine brain Gbetagamma also caused PI3K and Akt activation. These results show that DGC-Gbetagamma is binding PI3K and activating pAkt in a laminin-dependent manner. Mdx mice, which have greatly diminished amounts of DGC proteins, display elevated pAkt signaling and increased expression of integrin beta1 compared to normal muscle. This integrin binds laminin, Gbetagamma, and PI3K. Collectively, these suggest that PI3K is an important target for the Gbetagamma, which normally binds to DGC syntrophin, and activates PI3K/Akt signaling. Disruption of the DGC in mdx mouse is causing dis-regulation of the laminin-DGC-Gbetagamma-PI3K-Akt signaling and is likely to be important to the pathogenesis of muscular dystrophy. Upregulating integrin beta1 expression and activating the PI3K/Akt pathway in muscular dystrophy may partially compensate for the loss of the DGC. The results suggest new therapeutic approaches to muscle disease.
此前,我们发现层粘连蛋白与骨骼肌的肌营养不良蛋白糖蛋白复合物(DGC)结合会导致异源三聚体G蛋白(Gαβγ)结合,从而改变Gsα亚基的激活状态。其他人则表明层粘连蛋白与DGC结合也会导致Akt激活。已知当Gsα被激活时释放的Gβγ会结合磷脂酰肌醇-3-激酶(PI3K),后者在其他细胞中激活Akt。在此,我们使用免疫沉淀和免疫印迹以及纯化的Gβγ来研究肌肉中Akt的激活是否源于Gβγ。在层粘连蛋白存在的情况下,PI3K与DGC的结合增加,Akt被磷酸化并激活(pAkt),糖原合酶激酶也被磷酸化。特异性阻断层粘连蛋白与α- dystroglycan结合的抗体可阻止PI3K与DGC结合。纯化的牛脑Gβγ也会导致PI3K和Akt激活。这些结果表明DGC - Gβγ以层粘连蛋白依赖的方式结合PI3K并激活pAkt。与正常肌肉相比,DGC蛋白量大幅减少的mdx小鼠显示出pAkt信号增强和整合素β1表达增加。这种整合素结合层粘连蛋白、Gβγ和PI3K。总的来说,这些表明PI3K是Gβγ的重要靶点,Gβγ通常与DGC syntrophin结合并激活PI3K/Akt信号通路。mdx小鼠中DGC的破坏导致层粘连蛋白 - DGC - Gβγ - PI3K - Akt信号通路失调,这可能对肌肉营养不良的发病机制很重要。在肌肉营养不良中上调整合素β1表达并激活PI3K/Akt途径可能部分补偿DGC的缺失。这些结果提示了治疗肌肉疾病的新方法。