Suppr超能文献

对默认状态和认知状态下的大脑激活模式进行建模。

Modeling brain activation patterns for the default and cognitive states.

作者信息

Steyn-Ross Moira L, Steyn-Ross D A, Wilson M T, Sleigh J W

机构信息

Department of Engineering, University of Waikato, P.B. 3105, Hamilton 3240, New Zealand.

出版信息

Neuroimage. 2009 Apr 1;45(2):298-311. doi: 10.1016/j.neuroimage.2008.11.036. Epub 2008 Dec 11.

Abstract

We argue that spatial patterns of cortical activation observed with EEG, MEG and fMRI might arise from spontaneous self-organisation of interacting populations of excitatory and inhibitory neurons. We examine the dynamical behavior of a mean-field cortical model that includes chemical and electrical (gap-junction) synapses, focusing on two limiting cases: the "slow-soma" limit with slow voltage feedback from soma to dendrite, and the "fast-soma" limit in which the feedback action of soma voltage onto dendrite reversal potentials is instantaneous. For slow soma-dendrite feedback, we find a low-frequency (approximately 1 Hz) dynamic Hopf instability, and a stationary Turing instability that catalyzes formation of patterned distributions of cortical firing-rate activity with pattern wavelength approximately 2 cm. Turing instability can only be triggered when gap-junction diffusion between inhibitory neurons is strong, but patterning is destroyed if the tonic level of subcortical excitation is raised sufficiently. Interaction between the Hopf and Turing instabilities may describe the non-cognitive background or "default" state of the brain, as observed by BOLD imaging. In the fast-soma limit, the model predicts a high-frequency Hopf (approximately 35 Hz) instability, and a traveling-wave gamma-band instability that manifests as a 2-D standing-wave pattern oscillating in place at approximately 30 Hz. Small levels of inhibitory diffusion enhance and broaden the definition of the gamma antinodal regions by suppressing higher-frequency spatial modes, but gamma emergence is not contingent on the presence of inhibitory gap junctions; higher levels of diffusion suppress gamma activity. Fast-soma instabilities are enhanced by increased subcortical stimulation. Prompt soma-dendrite feedback may be an essential component of the genesis and large-scale cortical synchrony of gamma activity observed at the point of cognition.

摘要

我们认为,通过脑电图(EEG)、脑磁图(MEG)和功能磁共振成像(fMRI)观察到的皮质激活空间模式,可能源于兴奋性和抑制性神经元相互作用群体的自发自组织。我们研究了一个平均场皮质模型的动力学行为,该模型包括化学和电(缝隙连接)突触,重点关注两种极限情况:“慢胞体”极限,即从胞体到树突的电压反馈缓慢;以及“快胞体”极限,即胞体电压对树突反转电位的反馈作用是瞬时的。对于慢的胞体 - 树突反馈,我们发现了一个低频(约1赫兹)动态霍普夫不稳定性,以及一个静态图灵不稳定性,它催化形成皮质放电率活动的模式分布,模式波长约为2厘米。图灵不稳定性只有在抑制性神经元之间的缝隙连接扩散很强时才会被触发,但如果皮质下兴奋的强直水平充分提高,模式就会被破坏。霍普夫和图灵不稳定性之间的相互作用可能描述了如通过血氧水平依赖性功能磁共振成像(BOLD成像)所观察到的大脑的非认知背景或“默认”状态。在快胞体极限情况下,该模型预测了一个高频霍普夫(约35赫兹)不稳定性,以及一个行波伽马波段不稳定性,表现为一个二维驻波模式,以约30赫兹原地振荡。少量的抑制性扩散通过抑制高频空间模式增强并拓宽了伽马波腹区域的定义,但伽马波的出现并不依赖于抑制性缝隙连接的存在;更高水平的扩散会抑制伽马活动。快胞体不稳定性会因皮质下刺激增加而增强。快速的胞体 - 树突反馈可能是在认知点观察到的伽马活动产生和大规模皮质同步的一个重要组成部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验