Macholl Sven, Mäder Heinrich, Harder Hauke, Margulès Laurent, Dréan Pascal, Cosléou Jean, Demaison Jean, Pracna Petr
Institut für Physikalische Chemie, Universität Kiel, Olshausenstrasse 40-60, 24098 Kiel, Germany.
J Phys Chem A. 2009 Jan 29;113(4):668-79. doi: 10.1021/jp807342f.
The rotational spectrum of NSF3 in the ground and v5 = 1 vibrational states has been investigated in the centimeter- and millimeter-wave ranges. R-branch (J + 1 <-- J) transitions for J = 0, 1 and Q-branch rotational transitions for the v5 = 1 vibrational state have been measured by waveguide Fourier transform microwave spectroscopy in the range 8-26.5 GHz. The Q-branch transitions include 28 direct l-type doubling transitions (kl = +1, A1) <--> (kl = +1, A2) with J < or = 62, and 108 direct l-type resonance transitions following the selection rule delta k = delta l = +/-2 with J < or = 60 and G = |k - l| < or = 3. A process called "regional resonance" was observed in which a cluster of levels interacted strongly over a large range in J. This process led to the observation of 55 perturbation-allowed transitions following the selection rules delta(k - l) = +/-3, +/-6. In particular, (kl = +1, A+) <--> (kl = -2, A-), (kl = +4, A+) <--> (kl = +1, A-), (kl = +2) <--> (kl = -1), (kl = +3) <--> (kl = 0), (kl = +2) <--> (kl = -3), and (kl = +3) <--> (kl = -3). The various aspects of the regional resonances are discussed in detail. An accidental near-degeneracy of the kl = 0 and kl = -4 levels at J = 26/27 led to the observation of perturbation-allowed transitions following the selection rule delta(k-l) = +/-6 with (kl = +2) <--> (kl = -4). A corresponding near-degeneracy between kl = -1 and kl = -3 levels at J = 30/31 led to the detection of similar transitions, but with (kl = +3) <--> (kl = -3). In the range 230-480 GHz, R-branch rotational transitions have been measured by absorption spectroscopy up to J = 49 in the ground-state and up to J = 50 in the v5 = 1 vibrational state. The transition frequencies have been analyzed using various reduced forms of the effective Hamiltonians. The data for the v5 = 1 vibrational state have been fitted successfully using two models up to seventh order with delta k = +/-3 interaction parameters constrained (dt constrained to zero, and epsilon to zero or to the ground-state value). On the other hand, reductions with the (delta k = +/-1, deltal = -/+2) interaction parameter q12 fixed to zero failed to reproduce the experimental data since the parameters defining the reduction transformation do not arise in the correct order of magnitude. The ground-state data have been analyzed including parameters up to fourth order constraining either parameters of the delta k = +/-3 interactions to zero (reduction A), or of the delta k = +/-6 interactions to zero (reduction B). The unitary equivalence of the different parameter sets obtained is demonstrated for both vibrational states.
在厘米波和毫米波波段研究了基态及(v_5 = 1)振动态下(NSF_3)的转动光谱。通过波导傅里叶变换微波光谱法在(8 - 26.5)GHz范围内测量了(J = 0)、(1)时的(R)支((J + 1 \leftarrow J))跃迁以及(v_5 = 1)振动态下的(Q)支转动跃迁。(Q)支跃迁包括(28)个直接(l)型双重分裂跃迁((k_l = +1),(A_1))(\leftrightarrow)((k_l = +1),(A_2)),(J \leq 62);以及(108)个直接(l)型共振跃迁,遵循选择定则(\Delta k = \Delta l = \pm2),(J \leq 60)且(G = |k - l| \leq 3)。观察到一个称为“区域共振”的过程,其中在较大的(J)范围内,一组能级强烈相互作用。该过程导致观察到(55)个遵循选择定则(\Delta(k - l) = \pm3),(\pm6)的微扰允许跃迁。特别地,((k_l = +1),(A_+))(\leftrightarrow)((k_l = -2),(A_-)),((k_l = +4),(A_+))(\leftrightarrow)((k_l = +1),(A_-)),((k_l = +2))(\leftrightarrow)((k_l = -1)),((k_l = +3))(\leftrightarrow)((k_l = 0)),((k_l = +2))(\leftrightarrow)((k_l = -3)),以及((k_l = +3))(\leftrightarrow)((k_l = -3))。详细讨论了区域共振的各个方面。在(J = 26/27)时,(k_l = 0)和(k_l = -4)能级的意外近简并导致观察到遵循选择定则(\Delta(k - l) = \pm6)的微扰允许跃迁((k_l = +2))(\leftrightarrow)((k_l = -4))。在(J = 30/31)时,(k_l = -1)和(k_l = -3)能级之间的相应近简并导致检测到类似的跃迁,但为((k_l = +3))(\leftrightarrow)((k_l = -3))。在(230 - 480)GHz范围内,通过吸收光谱法测量了基态下高达(J = 49)以及(v_5 = 1)振动态下高达(J = 50)的(R)支转动跃迁。使用有效哈密顿量的各种简化形式对跃迁频率进行了分析。对于(v_5 = 1)振动态的数据,使用两种模型成功拟合到七阶,其中(\Delta k = \pm3)相互作用参数受约束((d_t)约束为零,(\epsilon)为零或基态值)。另一方面,将((\Delta k = \pm1),(\Delta l = \mp2))相互作用参数(q_{12})固定为零的简化未能重现实验数据,因为定义简化变换的参数未以正确的数量级出现。对基态数据进行了分析,包括高达四阶的参数,将(\Delta k = \pm3)相互作用的参数约束为零(简化(A)),或将(\Delta k = \pm6)相互作用的参数约束为零(简化(B))。证明了对于两种振动态,所获得的不同参数集的酉等价性。