Institute of Medical Biostatistics, Epidemiology and Informatics, University of Mainz, Mainz, Germany.
Contemp Clin Trials. 2009 Mar;30(2):171-7. doi: 10.1016/j.cct.2008.12.002. Epub 2008 Dec 16.
Adaptive designs allow a clinical trial design to be changed according to interim findings without inflating type I error. The Inverse Normal method can be considered as an adaptive generalization of classical group sequential designs. The use of the Inverse Normal method for censored survival data was demonstrated only for the logrank statistic. However, the logrank statistic is inefficient in the presence of nuisance covariates affecting survival. We demonstrate, how the Inverse Normal method can be applied to Cox regression analysis. The required independence between test statistics of the different stages of the trial can be obtained by two different approaches. One is using the independent increment structure of the score process. The other uses right censoring and left truncating to divide individuals follow-up into per-stage data. Simulation studies show, that performance of the adaptive design does not depend on the method used for obtaining independence. Either way, an adaptive Cox regression analyis is more efficient than an adaptive logrank analysis if nuisance covariates affect survival.
自适应设计允许根据中期发现修改临床试验设计,而不会增加Ⅰ类错误。逆正态法可以被视为经典分组序贯设计的自适应推广。逆正态法用于删失生存数据的应用仅针对对数秩统计量进行了证明。然而,在存在影响生存的混杂协变量的情况下,对数秩统计量效率不高。我们演示了如何将逆正态法应用于 Cox 回归分析。通过两种不同的方法可以获得试验不同阶段的检验统计量之间的独立性。一种方法是使用得分过程的独立增量结构。另一种方法使用右删失和左截断将个体随访分为各阶段数据。模拟研究表明,自适应设计的性能不依赖于获得独立性的方法。无论哪种方式,如果混杂协变量影响生存,自适应 Cox 回归分析比自适应对数秩分析更有效。