Suppr超能文献

An acellular matrix-bound ligand enhances the mobilization, recruitment and therapeutic effects of circulating progenitor cells in a hindlimb ischemia model.

作者信息

Suuronen Erik J, Zhang Pingchuan, Kuraitis Drew, Cao Xudong, Melhuish Angela, McKee Daniel, Li Fengfu, Mesana Thierry G, Veinot John P, Ruel Marc

机构信息

Division of Cardiac Surgery, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada.

出版信息

FASEB J. 2009 May;23(5):1447-58. doi: 10.1096/fj.08-111054. Epub 2009 Jan 9.

Abstract

Circulating progenitor cells home to and engraft to sites of ischemia, mediated in part by the adhesion molecule L-selectin; however, accumulation in tissues such as the heart is low. In this study, an acellular collagen-based matrix containing sialyl Lewis(X) (sLe(X)), which binds L-selectin, was developed in order to enhance the endogenous progenitor cell therapeutic response. Its effect on progenitor cells and angiogenesis were assessed in vitro and using a hindlimb ischemia model with rats. In culture, the sLe(X)-collagen matrix recruited more CD133(+)CD34(+)L-selectin(+) cells than collagen-only matrix, with adhesion mediated by L-selectin binding. Increased angiogenic/chemotactic cytokine production and improved resistance to apoptosis appeared in cells cultured on sLe(X)-collagen matrix. In vivo, mobilization of endogenous circulating progenitor cells was increased, and greater recruitment of these and systemically injected human peripheral blood CXCR4(+)L-selectin(+) cells to sLe(X)-collagen treated limbs was observed compared to collagen-only. This condition was associated with differences in angiogenic/chemotactic cytokine levels, with greater arteriole density and increased perfusion in sLe(X)-collagen treated hindlimbs. With these factors taken together, we demonstrated that an acellular matrix-bound ligand approach can enhance the mobilization, recruitment, and therapeutic effects of endogenous and/or transplanted progenitor cells, possibly through paracrine and antiapoptotic mechanisms, and could be used to improve cell-based regenerative therapies.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验