Suppr超能文献

用于完整蛋白质常规表征和定量的单四极杆液相色谱-质谱联用光谱的多变量分析。

Multivariate analysis of single quadrupole LC-MS spectra for routine characterization and quantification of intact proteins.

作者信息

Michaud François-Thomas, Garnier Alain, Lemieux Lise, Duchesne Carl

机构信息

Département Génie Chimique, Université Laval, Québec, Qc, Canada.

出版信息

Proteomics. 2009 Feb;9(3):512-20. doi: 10.1002/pmic.200800300.

Abstract

Modern high-throughput proteomic platforms allow incomparable protein mixture resolution and identification. However, such sophisticated facilities are expensive and not always accessible for routine analysis of simple mixtures. In this paper, we propose a simple methodology, based on detection of intact, nondigested proteins by LC coupled to single quadrupole MS (sqLC-MS), followed by the analysis of the resulting spectra by multivariate analysis (MA). By doing so, even large molecular weight (MW) proteins, generating complex spectra, can be characterized to a level that allows isoform discrimination, while standard algorithms, such as MS spectrum deconvolution, cannot. To demonstrate the effectiveness of the proposed approach, we have analyzed the spectra of a set of purified, intact albumins from seven different organisms (bovine, human, rabbit, rat, sheep, mouse, and pig) as a model of microheterogenous proteins, using Projection to Latent Structure Discriminant Analysis (PLS-DA). Although these proteins are very similar (less than 1% difference in MW), sqLC-MS/MA allowed their classification, and the identification of unknown source samples. In addition, MA allowed precise protein quantification from the same data (calibration curve R2 = 0.9966). The ability to rapidly characterize and quantify proteins, together with simplicity and affordability, could make of combined sqLC-MS/MA a routine method for the characterization of simple mixture of known proteins.

摘要

现代高通量蛋白质组学平台能够实现无与伦比的蛋白质混合物分离和鉴定。然而,此类精密设备价格昂贵,对于简单混合物的常规分析而言并非总能使用。在本文中,我们提出了一种简单的方法,该方法基于通过液相色谱与单四极杆质谱联用(sqLC-MS)检测完整的、未消化的蛋白质,随后通过多变量分析(MA)对所得光谱进行分析。通过这样做,即使是产生复杂光谱的大分子质量(MW)蛋白质,也能够被表征到可以区分异构体的程度,而诸如质谱光谱解卷积等标准算法则无法做到。为了证明所提出方法的有效性,我们使用潜在结构判别分析投影法(PLS-DA)分析了一组来自七种不同生物体(牛、人、兔、大鼠、绵羊、小鼠和猪)的纯化完整白蛋白的光谱,以此作为微异质蛋白质的模型。尽管这些蛋白质非常相似(MW差异小于1%),但sqLC-MS/MA能够对它们进行分类,并鉴定未知来源的样品。此外,多变量分析允许从相同数据中进行精确的蛋白质定量(校准曲线R2 = 0.9966)。快速表征和定量蛋白质的能力,再加上简单性和可承受性,可能使sqLC-MS/MA组合成为表征已知蛋白质简单混合物的常规方法。

相似文献

4
Computational methods for the comparative quantification of proteins in label-free LCn-MS experiments.
Brief Bioinform. 2008 Mar;9(2):156-65. doi: 10.1093/bib/bbm046. Epub 2007 Sep 28.
5
SuperHirn - a novel tool for high resolution LC-MS-based peptide/protein profiling.
Proteomics. 2007 Oct;7(19):3470-80. doi: 10.1002/pmic.200700057.
6
Mixed-effects statistical model for comparative LC-MS proteomics studies.
J Proteome Res. 2008 Mar;7(3):1209-17. doi: 10.1021/pr070441i. Epub 2008 Feb 6.
7
An iterative strategy for precursor ion selection for LC-MS/MS based shotgun proteomics.
J Proteome Res. 2009 Jul;8(7):3239-51. doi: 10.1021/pr800835x.
9
Coupling immunoaffinity techniques with MS for quantitative analysis of low-abundance protein biomarkers.
Expert Rev Proteomics. 2007 Apr;4(2):175-86. doi: 10.1586/14789450.4.2.175.

引用本文的文献

1
HDL in humans with cardiovascular disease exhibits a proteomic signature.
Clin Chim Acta. 2010 Jul 4;411(13-14):972-9. doi: 10.1016/j.cca.2010.03.023. Epub 2010 Mar 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验