Suppr超能文献

假声带对发声过程中声门气流和声带振动影响的计算研究。

A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.

作者信息

Zheng Xudong, Bielamowicz Steve, Luo Haoxiang, Mittal Rajat

机构信息

Department of Mechanical and Aerospace Engineering, The George Washington University, Suite T729, 801 22nd Street, Philips Hall, NW, Washington, D.C. 20052, USA.

出版信息

Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.

Abstract

The false vocal folds are believed to be components of the acoustic filter that is responsible for shaping the voice. However, the effects of false vocal folds on the vocal fold vibration and the glottal aerodynamic during phonation remain unclear. This effect has implications for computational modeling of phonation as well as for understanding laryngeal pathologies such as glottal incompetence resulting from unilateral vocal fold paralysis. In this study, a high fidelity, two-dimensional computational model, which combines an immersed boundary method for the airflow and a continuum, finite-element method for the vocal folds, is used to examine the effect of the false vocal folds on flow-induced vibration (FIV) of the true vocal folds and the dynamics of the glottal jet. The model is notionally based on a laryngeal CT scan and employs realistic flow conditions and tissue properties. Results show that the false vocal folds potentially have a significant impact on phonation. The false vocal folds reduce the glottal flow impedance and increase the amplitude as well as the mean glottal jet velocity. The false vocal folds also enhance the intensity of the monopole acoustic sources in the glottis. A mechanism for reduction in flow impedance due to the false vocal folds is proposed.

摘要

假声带被认为是负责塑造声音的声学滤波器的组成部分。然而,假声带在发声过程中对声带振动和声门空气动力学的影响仍不清楚。这种影响对发声的计算建模以及理解喉部疾病(如单侧声带麻痹导致的声门功能不全)具有重要意义。在本研究中,一个高保真二维计算模型被用于研究假声带对真声带的流致振动(FIV)和声门射流动力学的影响。该模型结合了用于气流的浸入边界方法和用于声带的连续有限元方法。该模型理论上基于喉部CT扫描,并采用了实际的流动条件和组织特性。结果表明,假声带可能对发声有显著影响。假声带降低了声门流阻,增加了振幅以及声门射流平均速度。假声带还增强了声门中单极声源的强度。提出了假声带导致流阻降低的一种机制。

相似文献

1
A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.
3
The effect of air flow and medial adductory compression on vocal efficiency and glottal vibration.
Otolaryngol Head Neck Surg. 1990 Mar;102(3):212-8. doi: 10.1177/019459989010200302.
4
Optimized transformation of the glottal motion into a mechanical model.
Med Eng Phys. 2011 Mar;33(2):210-7. doi: 10.1016/j.medengphy.2010.09.019. Epub 2010 Nov 5.
6
A computational study of the effect of vocal-fold asymmetry on phonation.
J Acoust Soc Am. 2010 Aug;128(2):818-27. doi: 10.1121/1.3458839.
7
The minimum glottal airflow to initiate vocal fold oscillation.
J Acoust Soc Am. 2007 May;121(5 Pt1):2873-81. doi: 10.1121/1.2710961.
8
Time-Dependent Pressure and Flow Behavior of a Self-oscillating Laryngeal Model With Ventricular Folds.
J Voice. 2015 Nov;29(6):649-59. doi: 10.1016/j.jvoice.2014.10.021. Epub 2015 Apr 11.
9
Vocal fold bulging effects on phonation using a biophysical computer model.
J Voice. 2000 Dec;14(4):470-83. doi: 10.1016/s0892-1997(00)80004-1.
10
An experimental analysis of the pressures and flows within a driven mechanical model of phonation.
J Acoust Soc Am. 2006 May;119(5 Pt 1):3011-21. doi: 10.1121/1.2186429.

引用本文的文献

2
insights into irregular voice production as a complex nonlinear system-a case study.
J R Soc Interface. 2025 Aug;22(229):20250086. doi: 10.1098/rsif.2025.0086. Epub 2025 Aug 13.
4
Pressure Distributions in Glottal Geometries With Multichannel Airflows.
J Voice. 2024 Sep 16. doi: 10.1016/j.jvoice.2024.08.019.
5
Simulation of Multiple Source Vocalization in the Larynx: How True Folds, False Folds, and Aryepiglottic Folds May Interact.
J Speech Lang Hear Res. 2024 Mar 11;67(3):802-810. doi: 10.1044/2023_JSLHR-23-00503. Epub 2024 Feb 28.
7
Towards modeling of phonation and its recovery in unilateral vocal fold paralysis by fluid-structure interaction.
Bioimpacts. 2023;13(6):488-494. doi: 10.34172/bi.2023.23809. Epub 2023 Jul 22.
9
Examining the influence of epithelium layer modeling approaches on vocal fold kinematics and kinetics.
Biomech Model Mechanobiol. 2023 Apr;22(2):479-493. doi: 10.1007/s10237-022-01658-2. Epub 2022 Dec 19.
10
Symptom Expression Across Voiced Speech Sounds in Adductor Laryngeal Dystonia.
J Voice. 2025 Mar;39(2):567.e23-567.e30. doi: 10.1016/j.jvoice.2022.10.002. Epub 2022 Nov 21.

本文引用的文献

1
A VERSATILE SHARP INTERFACE IMMERSED BOUNDARY METHOD FOR INCOMPRESSIBLE FLOWS WITH COMPLEX BOUNDARIES.
J Comput Phys. 2008;227(10):4825-4852. doi: 10.1016/j.jcp.2008.01.028.
2
An immersed-boundary method for flow-structure interaction in biological systems with application to phonation.
J Comput Phys. 2008 Nov 20;227(22):9303-9332. doi: 10.1016/j.jcp.2008.05.001.
3
The phonation critical condition in rectangular glottis with wide prephonatory gaps.
J Acoust Soc Am. 2008 Mar;123(3):1637-41. doi: 10.1121/1.2832328.
6
The minimum glottal airflow to initiate vocal fold oscillation.
J Acoust Soc Am. 2007 May;121(5 Pt1):2873-81. doi: 10.1121/1.2710961.
7
Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models.
Ann Otol Rhinol Laryngol. 2007 Feb;116(2):135-44. doi: 10.1177/000348940711600210.
8
9
Modeling coupled aerodynamics and vocal fold dynamics using immersed boundary methods.
J Acoust Soc Am. 2006 Nov;120(5 Pt 1):2859-71. doi: 10.1121/1.2354069.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验