Suppr超能文献

在药物发现研究中,人体药代动力学预测对化合物筛选是否具有显著价值?

Does human pharmacokinetic prediction add significant value to compound selection in drug discovery research?

作者信息

Beaumont Kevin, Smith Dennis A

机构信息

Pfizer Global Research and Development, Department of Pharmacokinetics, Dynamics and Metabolism, Sandwich Laboratories, Sandwich, Kent, UK.

出版信息

Curr Opin Drug Discov Devel. 2009 Jan;12(1):61-71.

Abstract

The application of drug metabolism expertise to early compound selection and optimization has reduced attrition in human pharmacokinetic studies. This reduction has been primarily driven by an increased understanding of the physicochemical properties required in order for a compound to exhibit an appropriate human pharmacokinetic profile. Human pharmacokinetic predictions based on preclinical data are often used to select compounds for further progression. However, the level of prediction accuracy of this approach suggests that the state of the art in human pharmacokinetic prediction will not drive a further reduction in human pharmacokinetic attrition rates. An overall success rate of 60 to 80% of compounds being retrospectively predicted within +/- 2-fold of actual human parameters is insufficient to discriminate closely related analogs within a series. In addition, the post genomic era has led to an explosion in pharmacological targets requiring physicochemistry for interaction with the target that is outside that required for desirable ADME properties. Such targets drive selection decisions into a space where actual human pharmacokinetics are complex and the results from human pharmacokinetic prediction methods are therefore at their most variable. Consequently, the most effective way to operate in these more complicated situations is to devise a rapid and low-cost strategy to complete low-dose human pharmacokinetic studies.

摘要

将药物代谢专业知识应用于早期化合物筛选和优化,已减少了人体药代动力学研究中的淘汰率。这种减少主要是由于对化合物展现出合适的人体药代动力学特征所需的物理化学性质有了更深入的了解。基于临床前数据的人体药代动力学预测常被用于选择化合物进行进一步研发。然而,这种方法的预测准确性表明,人体药代动力学预测的现有技术水平不会促使人体药代动力学淘汰率进一步降低。总体而言,60%至80%的化合物能够在实际人体参数的±2倍范围内被回顾性预测,这一成功率不足以区分系列内密切相关的类似物。此外,后基因组时代导致了药理学靶点的激增,这些靶点与靶点相互作用所需的物理化学性质超出了理想的药物吸收、分布、代谢和排泄(ADME)性质所需的范围。此类靶点将筛选决策带入了一个实际人体药代动力学复杂且人体药代动力学预测方法结果变化最大的领域。因此,在这些更复杂的情况下最有效的操作方式是设计一种快速且低成本的策略来完成低剂量人体药代动力学研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验