Indiana University School of Informatics, Indiana University-Purdue University, Indianapolis, 46202, USA.
Proteins. 2009 Aug 1;76(2):309-16. doi: 10.1002/prot.22343.
How to refine a near-native structure to make it closer to its native conformation is an unsolved problem in protein-structure and protein-protein complex-structure prediction. In this article, we first test several scoring functions for selecting locally resampled near-native protein-protein docking conformations and then propose a computationally efficient protocol for structure refinement via local resampling and energy minimization. The proposed method employs a statistical energy function based on a Distance-scaled Ideal-gas REference state (DFIRE) as an initial filter and an empirical energy function EMPIRE (EMpirical Protein-InteRaction Energy) for optimization and re-ranking. Significant improvement of final top-1 ranked structures over initial near-native structures is observed in the ZDOCK 2.3 decoy set for Benchmark 1.0 (74% whose global rmsd reduced by 0.5 A or more and only 7% increased by 0.5 A or more). Less significant improvement is observed for Benchmark 2.0 (38% versus 33%). Possible reasons are discussed.
如何细化接近天然的结构,使其更接近天然构象,这是蛋白质结构和蛋白质-蛋白质复合物结构预测中的一个未解决的问题。在本文中,我们首先测试了几种打分函数,用于选择局部重采样的接近天然的蛋白质-蛋白质对接构象,然后提出了一种通过局部重采样和能量最小化进行结构细化的计算效率高的方案。该方法使用基于距离缩放理想气体参考状态(DFIRE)的统计能量函数作为初始滤波器,以及用于优化和重新排序的经验能量函数 EMPIRE(经验蛋白质相互作用能量)。在 ZDOCK 2.3 模拟数据集 Benchmark 1.0 中,初始近天然结构的最终排名前 1 位的结构得到了显著改善(74%的结构全局 rmsd 降低了 0.5 A 或更多,只有 7%的结构增加了 0.5 A 或更多)。在 Benchmark 2.0 中观察到的改善程度较小(38%比 33%)。讨论了可能的原因。