Suppr超能文献

用于研究生物系统中结构色的物理方法。

Physical methods for investigating structural colours in biological systems.

作者信息

Vukusic P, Stavenga D G

机构信息

School of Physics, University of Exeter, Exeter EX4 4QL, UK.

出版信息

J R Soc Interface. 2009 Apr 6;6 Suppl 2(Suppl 2):S133-48. doi: 10.1098/rsif.2008.0386.focus. Epub 2009 Jan 21.

Abstract

Many biological systems are known to use structural colour effects to generate aspects of their appearance and visibility. The study of these phenomena has informed an eclectic group of fields ranging, for example, from evolutionary processes in behavioural biology to micro-optical devices in technologically engineered systems. However, biological photonic systems are invariably structurally and often compositionally more elaborate than most synthetically fabricated photonic systems. For this reason, an appropriate gamut of physical methods and investigative techniques must be applied correctly so that the systems' photonic behaviour may be appropriately understood. Here, we survey a broad range of the most commonly implemented, successfully used and recently innovated physical methods. We discuss the costs and benefits of various spectrometric methods and instruments, namely scatterometers, microspectrophotometers, fibre-optic-connected photodiode array spectrometers and integrating spheres. We then discuss the role of the materials' refractive index and several of the more commonly used theoretical approaches. Finally, we describe the recent developments in the research field of photonic crystals and the implications for the further study of structural coloration in animals.

摘要

许多生物系统利用结构色效应来塑造其外观和可见性。对这些现象的研究为一系列不同领域提供了信息,例如从行为生物学的进化过程到技术工程系统中的微光学器件。然而,生物光子系统在结构上,而且在组成上往往比大多数合成制造的光子系统更为复杂。因此,必须正确应用一系列合适的物理方法和研究技术,以便能够恰当地理解这些系统的光子行为。在此,我们综述了一系列广泛的、最常用、已成功应用且最近有所创新的物理方法。我们讨论了各种光谱测量方法和仪器的成本与效益,即散射仪、显微分光光度计、光纤连接的光电二极管阵列光谱仪和积分球。然后我们讨论了材料折射率的作用以及几种更常用的理论方法。最后,我们描述了光子晶体研究领域的最新进展以及对动物结构色进一步研究的意义。

相似文献

1
Physical methods for investigating structural colours in biological systems.
J R Soc Interface. 2009 Apr 6;6 Suppl 2(Suppl 2):S133-48. doi: 10.1098/rsif.2008.0386.focus. Epub 2009 Jan 21.
2
A protean palette: colour materials and mixing in birds and butterflies.
J R Soc Interface. 2009 Apr 6;6 Suppl 2(Suppl 2):S221-31. doi: 10.1098/rsif.2008.0459.focus. Epub 2009 Jan 13.
3
Many variations on a few themes: a broader look at development of iridescent scales (and feathers).
J R Soc Interface. 2009 Apr 6;6 Suppl 2(Suppl 2):S243-51. doi: 10.1098/rsif.2008.0372.focus. Epub 2009 Jan 13.
4
A photonic heterostructure produces diverse iridescent colours in duck wing patches.
J R Soc Interface. 2012 Sep 7;9(74):2279-89. doi: 10.1098/rsif.2012.0118. Epub 2012 Apr 4.
5
Iridescent structural colour production in male blue-black grassquit feather barbules: the role of keratin and melanin.
J R Soc Interface. 2009 Apr 6;6 Suppl 2(Suppl 2):S203-11. doi: 10.1098/rsif.2008.0460.focus. Epub 2009 Jan 13.
7
Spectrally tuned structural and pigmentary coloration of birdwing butterfly wing scales.
J R Soc Interface. 2015 Oct 6;12(111):20150717. doi: 10.1098/rsif.2015.0717.
8
Iridescence from photonic crystals and its suppression in butterfly scales.
J R Soc Interface. 2009 Apr 6;6 Suppl 2(Suppl 2):S233-42. doi: 10.1098/rsif.2008.0353.focus. Epub 2008 Nov 3.
9
Mimicking the colourful wing scale structure of the Papilio blumei butterfly.
Nat Nanotechnol. 2010 Jul;5(7):511-5. doi: 10.1038/nnano.2010.101. Epub 2010 May 30.
10
Wide-gamut structural colours on oakblue butterflies by naturally tuned photonic nanoarchitectures.
R Soc Open Sci. 2023 Apr 5;10(4):221487. doi: 10.1098/rsos.221487. eCollection 2023 Apr.

引用本文的文献

1
Towards global insect biomonitoring with frugal methods.
Philos Trans R Soc Lond B Biol Sci. 2024 Jun 24;379(1904):20230103. doi: 10.1098/rstb.2023.0103. Epub 2024 May 6.
3
Structural Color from Cellulose Nanocrystals or Chitin Nanocrystals: Self-Assembly, Optics, and Applications.
Chem Rev. 2023 Dec 13;123(23):12595-12756. doi: 10.1021/acs.chemrev.2c00836. Epub 2023 Nov 27.
4
Butterfly Wing Translucence Enables Enhanced Visual Signaling.
Insects. 2023 Feb 26;14(3):234. doi: 10.3390/insects14030234.
5
3D Tomographic Analysis of the Order-Disorder Interplay in the Pachyrhynchus congestus mirabilis Weevil.
Adv Sci (Weinh). 2022 Sep;9(26):e2202145. doi: 10.1002/advs.202202145. Epub 2022 Jul 18.
6
At the Intersection of Natural Structural Coloration and Bioengineering.
Biomimetics (Basel). 2022 May 23;7(2):66. doi: 10.3390/biomimetics7020066.
7
Mapping the local dielectric constant of a biological nanostructured system.
Beilstein J Nanotechnol. 2021 Jan 28;12:139-150. doi: 10.3762/bjnano.12.11. eCollection 2021.
8
Orientation-Dependent Reflection of Structurally Coloured Butterflies.
Biomimetics (Basel). 2020 Feb 3;5(1):5. doi: 10.3390/biomimetics5010005.
9
How conspicuous are peacock eyespots and other colorful feathers in the eyes of mammalian predators?
PLoS One. 2019 Apr 24;14(4):e0210924. doi: 10.1371/journal.pone.0210924. eCollection 2019.
10
Vividly coloured poppy flowers due to dense pigmentation and strong scattering in thin petals.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2019 Jun;205(3):363-372. doi: 10.1007/s00359-018-01313-1. Epub 2019 Jan 28.

本文引用的文献

3
Polarization-sensitive color mixing in the wing of the Madagascan sunset moth.
Opt Express. 2007 Mar 5;15(5):2691-701. doi: 10.1364/oe.15.002691.
4
Reflectance and transmittance of light scattering scales stacked on the wings of pierid butterflies.
Opt Express. 2006 May 29;14(11):4880-90. doi: 10.1364/oe.14.004880.
5
Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis.
Opt Express. 2001 Jan 29;8(3):173-90. doi: 10.1364/oe.8.000173.
6
A protean palette: colour materials and mixing in birds and butterflies.
J R Soc Interface. 2009 Apr 6;6 Suppl 2(Suppl 2):S221-31. doi: 10.1098/rsif.2008.0459.focus. Epub 2009 Jan 13.
7
Imaging scatterometry of butterfly wing scales.
Opt Express. 2009 Jan 5;17(1):193-202. doi: 10.1364/oe.17.000193.
8
A biological sub-micron thickness optical broadband reflector characterized using both light and microwaves.
J R Soc Interface. 2009 Apr 6;6 Suppl 2(Suppl 2):S193-201. doi: 10.1098/rsif.2008.0345.focus. Epub 2008 Nov 28.
9
Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers.
J R Soc Interface. 2009 Apr 6;6 Suppl 2(Suppl 2):S185-92. doi: 10.1098/rsif.2008.0299.focus. Epub 2008 Sep 9.
10
Discovery of a diamond-based photonic crystal structure in beetle scales.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 May;77(5 Pt 1):050904. doi: 10.1103/PhysRevE.77.050904. Epub 2008 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验