Zhang Xue-Qian, Wang Jufang, Carl Lois L, Song Jianliang, Ahlers Belinda A, Cheung Joseph Y
Division of Nephrology, Thomas Jefferson Univ., 833 Chestnut St., Suite 700, Philadelphia, PA 19107, USA.
Am J Physiol Cell Physiol. 2009 Apr;296(4):C911-21. doi: 10.1152/ajpcell.00196.2008. Epub 2009 Jan 21.
Phospholemman (PLM) belongs to the FXYD family of small ion transport regulators. When phosphorylated at Ser(68), PLM inhibits cardiac Na(+)/Ca(2+) exchanger (NCX1). We previously demonstrated that the cytoplasmic tail of PLM interacts with the proximal intracellular loop (residues 218-358), but not the transmembrane (residues 1-217 and 765-938) or Ca(2+)-binding (residues 371-508) domains, of NCX1. In this study, we used intact Na(+)/Ca(2+) exchanger with various deletions in the intracellular loop to map the interaction sites with PLM. We first demonstrated by Western blotting and confocal immunofluorescence microscopy that wild-type (WT) NCX1 and its deletion mutants were expressed in transfected HEK-293 cells. Cotransfection with PLM and NCX1 (or its deletion mutants) in HEK-293 cells did not decrease expression of NCX1 (or its deletion mutants). Coexpression of PLM with WT NCX1 inhibited NCX1 current (I(NaCa)). Deletion of residues 240-679, 265-373, 250-300, or 300-373 from WT NCX1 resulted in loss of inhibition of I(NaCa) by PLM. Inhibition of I(NaCa) by PLM was preserved when residues 229-237, 270-300, 328-330, or 330-373 were deleted from the intracellular loop of NCX1. These results suggest that PLM mediated inhibition of I(NaCa) by interacting with two distinct regions (residues 238-270 and 300-328) of NCX1. Indeed, I(NaCa) measured in mutants lacking residues 238-270, 300-328, or 238-270 + 300-328 was not affected by PLM. Glutathione S-transferase pull-down assays confirmed that PLM bound to fragments corresponding to residues 218-371, 218-320, 218-270, 238-371, and 300-373, but not to fragments encompassing residues 250-300 and 371-508 of NCX1, indicating that residues 218-270 and 300-373 physically associated with PLM. Finally, acute regulation of I(NaCa) by PLM phosphorylation observed with WT NCX1 was absent in 250-300 deletion mutant but preserved in 229-237 deletion mutant. We conclude that PLM mediates its inhibition of NCX1 by interacting with residues 238-270 and 300-328.
磷膜蛋白(PLM)属于FXYD小离子转运调节蛋白家族。当丝氨酸(Ser)68位点被磷酸化时,PLM会抑制心脏钠钙交换体(NCX1)。我们之前证明,PLM的胞质尾与NCX1的近端胞内环(第218 - 358位氨基酸残基)相互作用,但不与NCX1的跨膜区(第1 - 217位和第765 - 938位氨基酸残基)或钙结合区(第371 - 508位氨基酸残基)相互作用。在本研究中,我们使用了在胞内环有各种缺失的完整钠钙交换体来确定与PLM的相互作用位点。我们首先通过蛋白质免疫印迹法和共聚焦免疫荧光显微镜证明,野生型(WT)NCX1及其缺失突变体在转染的人胚肾293(HEK - 293)细胞中表达。在HEK - 293细胞中,PLM与NCX1(或其缺失突变体)共转染不会降低NCX1(或其缺失突变体)的表达。PLM与WT NCX1共表达会抑制NCX1电流(I(NaCa))。从WT NCX1中删除第240 - 679位、第265 - 373位、第250 - 300位或第300 - 373位氨基酸残基会导致PLM对I(NaCa)的抑制作用丧失。当从NCX1的胞内环中删除第229 - 237位、第270 - 300位、第328 - 330位或第330 - 373位氨基酸残基时,PLM对I(NaCa)的抑制作用得以保留。这些结果表明,PLM通过与NCX1的两个不同区域(第238 - 270位和第300 - 328位氨基酸残基)相互作用介导对I(NaCa)的抑制。实际上,在缺失第238 - 270位、第300 - 328位或第238 - 270 + 300 - 328位氨基酸残基的突变体中测得的I(NaCa)不受PLM影响。谷胱甘肽S - 转移酶下拉实验证实,PLM与对应于第218 - 371位、第218 - 320位、第218 - 270位、第238 - 371位和第300 - 373位氨基酸残基的片段结合,但不与包含NCX1第250 - 300位和第371 - 508位氨基酸残基的片段结合,这表明第218 - 270位和第300 - 373位氨基酸残基与PLM存在物理关联。最后,WT NCX1观察到的PLM磷酸化对I(NaCa)的急性调节在第250 - 300位缺失突变体中不存在,但在第229 - 237位缺失突变体中得以保留。我们得出结论,PLM通过与第238 - 270位和第300 - 328位氨基酸残基相互作用介导其对NCX1的抑制作用。