Suppr超能文献

人朊病毒蛋白中的可逆单体 - 寡聚体转变

Reversible monomer-oligomer transition in human prion protein.

作者信息

Sasaki Ken, Gaikwad Jyoti, Hashiguchi Shuhei, Kubota Toshiya, Sugimura Kazuhisa, Kremer Werner, Kalbitzer Hans Robert, Akasaka Kazuyuki

机构信息

High Pressure Protein Research Center, Institute of Advanced Technology and Graduate School of Biology-Oriented Science and Technology, Kinki University, Kinokawa, Japan.

出版信息

Prion. 2008 Jul-Sep;2(3):118-22. doi: 10.4161/pri.2.3.7148. Epub 2008 Jul 7.

Abstract

The structure and the dissociation reaction of oligomers Pr(Poligo) from reduced human prion huPrP(C)(23-231) have been studied by (1)H-NMR and tryptophan fluorescence spectroscopy at varying pressure, along with circular dichroism and atomic force microscopy. The 1H-NMR and fluorescence spectral feature of the oligomer is consistent with the notion that the N-terminal residues including all seven Trp residues, are free and mobile, while residues 105 approximately 210, comprising the AGAAAAGA motif and S1-Loop-HelixA-Loop-S2-Loop-HelixC, are engaged in intra- and/ or inter-molecular interactions. By increasing pressure to 200 MPa, the oligomers tend to dissociate into monomers which may be identified with PrP(C*), a rare metastable form of PrP(C) stabilized at high pressure (Kachel et al., BMC Struct Biol 6:16). The results strongly suggest that the oligomeric form PrP(oligo) is in dynamic equilibrium with the monomeric forms via PrP(C*), namely huPrP(C)[left arrow over right arrow]huPrP(C*)[left arrow over right arrow]huPrP(oligo).

摘要

通过在不同压力下的¹H-NMR和色氨酸荧光光谱,以及圆二色性和原子力显微镜,研究了来自还原型人朊病毒蛋白huPrP(C)(23 - 231)的低聚物Pr(Poligo)的结构和解离反应。低聚物的¹H-NMR和荧光光谱特征与以下观点一致:包括所有七个色氨酸残基的N端残基是自由且可移动的,而包含AGAAAAGA基序和S1-Loop-HelixA-Loop-S2-Loop-HelixC的105至210位残基参与分子内和/或分子间相互作用。通过将压力增加到200 MPa,低聚物倾向于解离成单体,这些单体可能与PrP(C*)相同,PrP(C*)是一种在高压下稳定的罕见亚稳态PrP(C)形式(卡赫尔等人,《BMC结构生物学》6:16)。结果强烈表明,低聚形式的PrP(oligo)通过PrP(C*)与单体形式处于动态平衡,即huPrP(C)⇌huPrP(C*)⇌huPrP(oligo)。

相似文献

1
Reversible monomer-oligomer transition in human prion protein.
Prion. 2008 Jul-Sep;2(3):118-22. doi: 10.4161/pri.2.3.7148. Epub 2008 Jul 7.
2
Residue-specific mobility changes in soluble oligomers of the prion protein define regions involved in aggregation.
Biochim Biophys Acta Proteins Proteom. 2018 Sep;1866(9):982-988. doi: 10.1016/j.bbapap.2018.06.005. Epub 2018 Jun 22.
3
4
Structural details of amyloid β oligomers in complex with human prion protein as revealed by solid-state MAS NMR spectroscopy.
J Biol Chem. 2021 Jan-Jun;296:100499. doi: 10.1016/j.jbc.2021.100499. Epub 2021 Mar 3.
6
Self-assembly of recombinant prion protein of 106 residues.
Biochemistry. 2000 Mar 14;39(10):2792-804. doi: 10.1021/bi9923353.
8
Distinct effects of Cu2+-binding on oligomerization of human and rabbit prion proteins.
Acta Biochim Biophys Sin (Shanghai). 2015 Oct;47(10):842-50. doi: 10.1093/abbs/gmv081. Epub 2015 Sep 7.
9
N-terminal Prion Protein Peptides (PrP(120-144)) Form Parallel In-register β-Sheets via Multiple Nucleation-dependent Pathways.
J Biol Chem. 2016 Oct 14;291(42):22093-22105. doi: 10.1074/jbc.M116.744573. Epub 2016 Aug 30.
10
The N Terminus of the Prion Protein Mediates Functional Interactions with the Neuronal Cell Adhesion Molecule (NCAM) Fibronectin Domain.
J Biol Chem. 2016 Oct 14;291(42):21857-21868. doi: 10.1074/jbc.M116.743435. Epub 2016 Aug 17.

引用本文的文献

1
Experimental NOE, Chemical Shift, and Proline Isomerization Data Provide Detailed Insights into Amelotin Oligomerization.
J Am Chem Soc. 2023 Aug 16;145(32):18063-18074. doi: 10.1021/jacs.3c05710. Epub 2023 Aug 7.
2
Unique Properties of the Rabbit Prion Protein Oligomer.
PLoS One. 2016 Aug 16;11(8):e0160874. doi: 10.1371/journal.pone.0160874. eCollection 2016.
5
N-terminal domain of prion protein directs its oligomeric association.
J Biol Chem. 2014 Sep 12;289(37):25497-508. doi: 10.1074/jbc.M114.566588. Epub 2014 Jul 29.
7
Energy landscape of the prion protein helix 1 probed by metadynamics and NMR.
Biophys J. 2012 Jan 4;102(1):158-67. doi: 10.1016/j.bpj.2011.12.003. Epub 2012 Jan 3.
8
Conformational properties of beta-PrP.
J Biol Chem. 2009 Aug 14;284(33):21981-21990. doi: 10.1074/jbc.M809173200. Epub 2009 Apr 15.

本文引用的文献

2
Kinetic analysis of amyloid protofibril dissociation and volumetric properties of the transition state.
Biophys J. 2007 Jan 1;92(1):323-9. doi: 10.1529/biophysj.106.088120. Epub 2006 Sep 22.
3
4
Amyloid formation by recombinant full-length prion proteins in phospholipid bicelle solutions.
J Mol Biol. 2006 Mar 31;357(3):833-41. doi: 10.1016/j.jmb.2006.01.016. Epub 2006 Jan 26.
5
The most infectious prion protein particles.
Nature. 2005 Sep 8;437(7056):257-61. doi: 10.1038/nature03989.
6
Pressure-jump NMR study of dissociation and association of amyloid protofibrils.
J Mol Biol. 2005 Jun 24;349(5):916-21. doi: 10.1016/j.jmb.2005.04.010.
7
In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc).
J Mol Biol. 2005 Feb 18;346(2):645-59. doi: 10.1016/j.jmb.2004.11.068. Epub 2004 Dec 19.
8
Molecular basis of barriers for interspecies transmissibility of mammalian prions.
Mol Cell. 2004 Apr 9;14(1):139-45. doi: 10.1016/s1097-2765(04)00155-8.
9
Locally disordered conformer of the hamster prion protein: a crucial intermediate to PrPSc?
Biochemistry. 2002 Oct 15;41(41):12277-83. doi: 10.1021/bi026129y.
10
Structural studies of the scrapie prion protein by electron crystallography.
Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3563-8. doi: 10.1073/pnas.052703499. Epub 2002 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验