Righini M, Ghenuche P, Cherukulappurath S, Myroshnychenko V, García de Abajo F J, Quidant R
ICFO-The Institute of Photonic Sciences, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain.
Nano Lett. 2009 Oct;9(10):3387-91. doi: 10.1021/nl803677x.
Immobilizing individual living microorganisms at designated positions in space is important to study their metabolism and to initiate an in situ scrutiny of the complexity of life at the nanoscale. While optical tweezers enable the trapping of large cells at the focus of a laser beam, they face difficulties in maintaining them steady and can become invasive and produce substantial damage that prevents preserving the organisms intact for sufficient time to be studied. Here we demonstrate a novel optical trapping scheme that allows us to hold living Escherichia coli bacteria for several hours using moderate light intensities. We pattern metallic nanoantennas on a glass substrate to produce strong light intensity gradients responsible for the trapping mechanism. Several individual bacteria are trapped simultaneously with their orientation fixed by the asymmetry of the antennas. This unprecedented immobilization of bacteria opens an avenue toward observing nanoscopic processes associated with cell metabolism, as well as the response of individual live microorganisms to external stimuli, much in the same way as pluricellular organisms are studied in biology.
将单个活微生物固定在空间中的指定位置对于研究它们的新陈代谢以及对纳米尺度生命复杂性进行原位仔细研究很重要。虽然光镊能够在激光束焦点处捕获大细胞,但在保持细胞稳定方面面临困难,并且可能具有侵入性并造成实质性损伤,从而无法在足够长的时间内完整保存生物体以供研究。在此,我们展示了一种新颖的光阱方案,该方案使我们能够使用适度的光强度将活的大肠杆菌保持数小时。我们在玻璃基板上制作金属纳米天线图案,以产生负责捕获机制的强光强度梯度。几个单个细菌同时被捕获,其方向由天线的不对称性固定。这种前所未有的细菌固定方式为观察与细胞新陈代谢相关的纳米过程以及单个活微生物对外部刺激的反应开辟了一条途径,这与生物学中研究多细胞生物的方式非常相似。