Suppr超能文献

逐层技术作为一种制备含磷脂纳米结构薄膜的新方法,用于传感应用中的传感器。

Layer-by-layer technique as a new approach to produce nanostructured films containing phospholipids as transducers in sensing applications.

作者信息

Aoki P H B, Volpati D, Riul A, Caetano W, Constantino C J L

机构信息

Faculdade de Ciencias e Tecnologia, UNESP, Presidente Prudente/SP, 19060-900 Brazil.

出版信息

Langmuir. 2009 Feb 17;25(4):2331-8. doi: 10.1021/la802696j.

Abstract

Phospholipids are widely used as mimetic systems to exploit interactions involving biological membranes and pharmacological drugs. In this work, the layer-by-layer (LbL) technique was used as a new approach to produce multilayered thin films containing biological phospholipids applied as transducers onto Pt interdigitated electrodes forming sensing units of an electronic tongue system. Low concentrations (nM level) of a phenothiazine compound were detected through impedance spectroscopy. Both negative 1,2-dipalmitoyl-sn-3-glycero-[phosphor-rac-(1-glycerol)] (DPPG) and zwitterionic l-alpha-1,2-dipalmitoyl-sn-3-glycero-phosphatidylcholine (DPPC) phospholipids were used to produce the LbL films, whose molecular architecture was monitored combining spectroscopy and microscopy at micro and nanoscales. The sensor array was complemented by Langmuir-Blodgett (LB) monolayers of DPPG and DPPC deposited onto Pt interdigitated electrodes as well. It was found that the distinct molecular architecture presented by both LbL and LB films plays a key role on the sensitivity of the sensor array with the importance of the LbL films being demonstrated by principal component analysis (PCA).

摘要

磷脂被广泛用作模拟系统,以研究涉及生物膜和药物的相互作用。在这项工作中,逐层(LbL)技术被用作一种新方法,来制备包含生物磷脂的多层薄膜,这些薄膜被用作传感器,涂覆在铂叉指电极上,形成电子舌系统的传感单元。通过阻抗谱检测到了低浓度(纳摩尔水平)的吩噻嗪化合物。使用了带负电荷的1,2-二棕榈酰-sn-3-甘油-[磷酸-rac-(1-甘油)](DPPG)和两性离子的l-α-1,2-二棕榈酰-sn-3-甘油磷脂酰胆碱(DPPC)这两种磷脂来制备LbL薄膜,其分子结构通过微观和纳米尺度的光谱学和显微镜技术相结合进行监测。该传感器阵列还补充了同样沉积在铂叉指电极上的DPPG和DPPC的朗缪尔-布洛杰特(LB)单分子层。结果发现,LbL和LB薄膜呈现出的不同分子结构对传感器阵列的灵敏度起着关键作用,主成分分析(PCA)证明了LbL薄膜的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验