Suppr超能文献

A role for SOX2 in the generation of microtubule-associated protein 2-positive cells from microglia.

作者信息

Nonaka Hideki, Niidome Tetsuhiro, Shinozuka Yoriko, Akaike Akinori, Kihara Takeshi, Sugimoto Hachiro

机构信息

Department of Neuroscience for Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.

出版信息

Biochem Biophys Res Commun. 2009 Feb 27;380(1):60-4. doi: 10.1016/j.bbrc.2009.01.027. Epub 2009 Jan 20.

Abstract

We recently demonstrated that, as a type of multipotential stem cells, microglia give rise to microtubule-associated protein 2 (MAP2)-positive and glial fibrillary acidic protein (GFAP)-positive cells. In this study, we investigated the role of SOX2, a high-mobility group DNA binding domain transcription factor, in the generation of microglia-derived MAP2-positive and GFAP-positive cells. Western blot analysis demonstrated that expression of SOX2 was upregulated by treatment with 70% fetal bovine serum treatment. Immunocytochemical analyses demonstrated that SOX2 expression was evident in the nuclei of microglia-derived MAP2-positive and GFAP-positive cells, whereas it was not present in the nuclei of microglia. These assays also showed that Sox2 siRNA inhibited the generation of MAP2-positive and GFAP-positive cells from microglia. Interestingly, this activity was also inhibited by Smad4 siRNA, which reduces SOX2 expression. These results indicate that SOX2 upregulation is involved in the generation of microglia-derived MAP2-positive and GFAP-positive cells through SMAD4.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验