Suppr超能文献

使用多通道匹配追踪检测新生儿脑电图癫痫发作。

Detection of neonatal EEG seizure using multichannel matching pursuit.

作者信息

Khlif M S, Mesbah M, Boashash B, Colditz P

机构信息

Perinatal Research Centre, University of Queensland, Australia.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:907-10. doi: 10.1109/IEMBS.2008.4649301.

Abstract

It is unusual for a newborn to have the classic "tonic-clonic" seizure experienced by adults and older children. Signs of seizure in newborns are either subtle or may become clinically silent. Therefore, the electroencephalogram (EEG) is becoming the most reliable tool for detecting neonatal seizure. Being non-stationary and multicomponent, EEG signals are suitably analyzed using time-frequency (TF) based methods. In this paper, we present a seizure detection method using a new measure based on the matching pursuit (MP) decomposition of EEG data. Signals are represented in the TF domain where seizure structural characteristics are extracted to form a new coherent TF dictionary to be used in the MP decomposition. A new approach to set data-dependent thresholds, used in the seizure detection process, is proposed. To enhance the performance of the detector, the concept of areas of incidence is utilized to determine the geometrical correlation between EEG recording channels.

摘要

新生儿出现成人和大龄儿童经历的典型“强直阵挛性”癫痫发作是不常见的。新生儿癫痫发作的迹象要么很细微,要么在临床上可能不明显。因此,脑电图(EEG)正成为检测新生儿癫痫最可靠的工具。由于EEG信号是非平稳且多分量的,适合使用基于时频(TF)的方法进行分析。在本文中,我们提出了一种基于EEG数据匹配追踪(MP)分解的新度量的癫痫检测方法。信号在TF域中表示,在该域中提取癫痫发作的结构特征以形成用于MP分解的新的相干TF字典。提出了一种在癫痫检测过程中设置数据相关阈值的新方法。为了提高检测器的性能,利用发生率区域的概念来确定EEG记录通道之间的几何相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验