Suppr超能文献

用于医学图像增强的快速直方图均衡化

Fast histogram equalization for medical image enhancement.

作者信息

Wang Qian, Chen Liya, Shen Dinggang

机构信息

Department of Electronic Engineering, Shanghai Jiao Tong University, 200240, China.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2217-20. doi: 10.1109/IEMBS.2008.4649636.

Abstract

To overcome the problem that the histogram equalization can fail for discrete images, a local-mean based strict pixel ordering method has been proposed recently, although it is unpractical for 3D medical image enhancement due to its complex computation. In this paper, a novel histogram mapping method is proposed. It uses a fast local feature generation technique to establish a combined histogram that represents voxels' local means as well as grey levels. Different sections of the combined histogram, separated by individual peaks, are independently mapped into the target histogram scale under the constraint that the final overall histogram should be as uniform as possible. By using this method, the speed of histogram equalization is dramatically improved, and the satisfactory enhancement results are also achieved.

摘要

为了克服直方图均衡化对离散图像可能失效的问题,最近有人提出了一种基于局部均值的严格像素排序方法,不过由于其计算复杂,在三维医学图像增强中并不实用。本文提出了一种新颖的直方图映射方法。它使用一种快速局部特征生成技术来建立一个组合直方图,该直方图既表示体素的局部均值,也表示灰度级。由各个峰值分隔开的组合直方图的不同部分,在最终总体直方图应尽可能均匀的约束下,被独立映射到目标直方图尺度。通过使用这种方法,直方图均衡化的速度得到了显著提高,并且也取得了令人满意的增强效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验