Reyes B A, Charleston-Villalobos S, Gonzalez-Camarena R, Aljama-Corrales T
Universidad Autónoma Metropolitana, Mexico City, Mexico.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3616-9. doi: 10.1109/IEMBS.2008.4649989.
Several researches have tried to provide a means to analyze the second heart sound (S2) in an attempt to understand the functional mechanisms in its genesis and for diagnosis purposes. In this work we tested Time-Frequency Representation (TFR) for simulated S2 selecting and applying classical and modern TFRs such as the Spectrogram, the Wigner-Ville Distribution, the Time Varying Autoregressive (TVAR) model, the Scalogram, and the Hilbert-Huang Spectrum (HHS) by Empirical Mode Decomposition. Two performance measures are proposed, the first one based on local 2D correlations (rho) between the ideal and the estimated TFRs images, while the second one based on time moments of the TFR images to provide the normalized root-mean-square error (NRMSE). Under no noise conditions, the TFRs by HHS and the TVAR modeling, by the Burg algorithm, resulted in a rho(average) of 0.788 and 0.812, and NRMSE of 0.172 and 0.195, respectively. Therefore, based on the lowest NRMSE, HHS was considered the TFR with the best performance. Afterward, HHS was applied to real S2 acquired at the aortic and pulmonary focal points.
多项研究试图提供一种分析第二心音(S2)的方法,以了解其产生的功能机制并用于诊断目的。在这项工作中,我们通过经验模态分解,对模拟的S2测试了时频表示(TFR),选择并应用了经典和现代的TFR,如频谱图、维格纳-威利分布、时变自回归(TVAR)模型、小波尺度图和希尔伯特-黄变换谱(HHS)。我们提出了两种性能度量,第一种基于理想TFR图像与估计TFR图像之间的局部二维相关性(rho),而第二种基于TFR图像的时间矩以提供归一化均方根误差(NRMSE)。在无噪声条件下,通过Burg算法的HHS和TVAR建模得到的TFR,rho(平均值)分别为0.788和0.812,NRMSE分别为0.172和0.195。因此,基于最低的NRMSE,HHS被认为是性能最佳的TFR。随后,HHS被应用于在主动脉和肺动脉焦点处采集的真实S2。