Suppr超能文献

使用独立成分分析(ICA)估计信号和噪声协方差以进行高分辨率皮层偶极子成像。

Estimation of signal and noise covariance using ICA for high-resolution cortical dipole imaging.

作者信息

Hori Junichi

机构信息

Department of Biocybernetics, Niigata University, Niigata, Japan.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3987-90. doi: 10.1109/IEMBS.2008.4650083.

Abstract

Suitable spatial filters were explored for inverse estimation of cortical dipole imaging from a scalp electroencephalogram. Computer simulations were used to examine the effects of incorporating statistical information of signal and noise into inverse procedures. Actually, the parametric projection filter (PPF) and parametric Wiener filter (PWF) were applied to an inhomogeneous three-sphere head model. The signal and noise covariance matrices were estimated by applying independent component analysis (ICA) to the scalp potentials. The simulation results described herein suggest that the PPF using differential noise between EEG and separated signal were equivalent to those obtained using the method with actual noise. Moreover, the PWF using separated signals has better performance than traditional inverse techniques.

摘要

探索了合适的空间滤波器,用于从头皮脑电图进行皮质偶极子成像的逆估计。利用计算机模拟来检验将信号和噪声的统计信息纳入逆过程的效果。实际上,将参数投影滤波器(PPF)和参数维纳滤波器(PWF)应用于非均匀三球体头部模型。通过对头皮电位应用独立成分分析(ICA)来估计信号和噪声协方差矩阵。本文所述的模拟结果表明,使用脑电图和分离信号之间的差分噪声的PPF与使用实际噪声方法获得的结果相当。此外,使用分离信号的PWF比传统逆技术具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验