Suppr超能文献

使用自展元分析合并多个微阵列研究。

Combining multiple microarray studies using bootstrap meta-analysis.

作者信息

Barrett Andrea B, Phan John H, Wang May D

机构信息

Department of Biomedical Engineering at the Georgia Institute of Technology, Atlanta, 30318 USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5660-3. doi: 10.1109/IEMBS.2008.4650498.

Abstract

Microarray technology has enabled us to simultaneously measure the expression of thousands of genes. Using this high-throughput data collection, we can examine subtle genetic changes between biological samples and build predictive models for clinical applications. Although microarrays have dramatically increased the rate of data collection, sample size is still a major issue in feature selection. Previous methods show that microarray data combination is successful in improving selection when using z-scores and fold change. We propose a wrapper based gene selection technique that combines bootstrap estimated classification errors for individual genes across multiple datasets. The bootstrap is an unbiased estimator of classification error and has been shown to be effective for small sample data. Coupled with data combination across multiple data sets, we show that this meta-analytic approach improves gene selection.

摘要

微阵列技术使我们能够同时测量数千个基因的表达。利用这种高通量数据收集方法,我们可以检测生物样本之间细微的基因变化,并构建用于临床应用的预测模型。尽管微阵列极大地提高了数据收集的速度,但样本量仍是特征选择中的一个主要问题。先前的方法表明,在使用z分数和倍数变化时,微阵列数据组合在改善选择方面是成功的。我们提出了一种基于包装法的基因选择技术,该技术结合了多个数据集中单个基因的自助估计分类误差。自助法是分类误差的无偏估计,已被证明对小样本数据有效。结合多个数据集的数据组合,我们表明这种元分析方法改进了基因选择。

相似文献

1
Combining multiple microarray studies using bootstrap meta-analysis.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5660-3. doi: 10.1109/IEMBS.2008.4650498.
2
Handling gene redundancy in microarray data using Grey Relational Analysis.
Int J Data Min Bioinform. 2008;2(2):134-44. doi: 10.1504/ijdmb.2008.019094.
3
What should be expected from feature selection in small-sample settings.
Bioinformatics. 2006 Oct 1;22(19):2430-6. doi: 10.1093/bioinformatics/btl407. Epub 2006 Jul 26.
4
Knowledge guided analysis of microarray data.
J Biomed Inform. 2006 Aug;39(4):401-11. doi: 10.1016/j.jbi.2005.08.004. Epub 2005 Sep 15.
5
The latent process decomposition of cDNA microarray data sets.
IEEE/ACM Trans Comput Biol Bioinform. 2005 Apr-Jun;2(2):143-56. doi: 10.1109/TCBB.2005.29.
6
Using pre-existing microarray datasets to increase experimental power: application to insulin resistance.
PLoS Comput Biol. 2010 Mar 26;6(3):e1000718. doi: 10.1371/journal.pcbi.1000718.
7
The ties problem resulting from counting-based error estimators and its impact on gene selection algorithms.
Bioinformatics. 2006 Oct 15;22(20):2507-15. doi: 10.1093/bioinformatics/btl438. Epub 2006 Aug 14.
8
Detecting potential labeling errors in microarrays by data perturbation.
Bioinformatics. 2006 Sep 1;22(17):2114-21. doi: 10.1093/bioinformatics/btl346. Epub 2006 Jul 4.
9
Classification based upon gene expression data: bias and precision of error rates.
Bioinformatics. 2007 Jun 1;23(11):1363-70. doi: 10.1093/bioinformatics/btm117. Epub 2007 Mar 28.
10
Structural Risk Minimisation based gene expression profiling analysis.
Int J Bioinform Res Appl. 2007;3(2):153-69. doi: 10.1504/IJBRA.2007.013600.

引用本文的文献

1
Integrated Left Ventricular Global Transcriptome and Proteome Profiling in Human End-Stage Dilated Cardiomyopathy.
PLoS One. 2016 Oct 6;11(10):e0162669. doi: 10.1371/journal.pone.0162669. eCollection 2016.
2
Left ventricular global transcriptional profiling in human end-stage dilated cardiomyopathy.
Genomics. 2009 Jul;94(1):20-31. doi: 10.1016/j.ygeno.2009.03.003. Epub 2009 Mar 28.

本文引用的文献

1
A possible role of BDNF in prostate cancer detection.
Oncol Rep. 2008 Apr;19(4):969-74. doi: 10.3892/or.19.4.969.
3
Reproducibility of differential gene detection across multiple microarray studies.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:4231-4. doi: 10.1109/IEMBS.2007.4353270.
4
CHD5 is a tumor suppressor at human 1p36.
Cell. 2007 Feb 9;128(3):459-75. doi: 10.1016/j.cell.2006.11.052.
5
Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR.
Biol Proced Online. 2006;8:175-93. doi: 10.1251/bpo126. Epub 2006 Dec 12.
6
CCR2 expression correlates with prostate cancer progression.
J Cell Biochem. 2007 Jun 1;101(3):676-85. doi: 10.1002/jcb.21220.
7
Large scale data mining approach for gene-specific standardization of microarray gene expression data.
Bioinformatics. 2006 Dec 1;22(23):2898-904. doi: 10.1093/bioinformatics/btl500. Epub 2006 Oct 10.
8
A scalable method for integration and functional analysis of multiple microarray datasets.
Bioinformatics. 2006 Dec 1;22(23):2890-7. doi: 10.1093/bioinformatics/btl492. Epub 2006 Sep 27.
10
Combining multiple microarrays in the presence of controlling variables.
Bioinformatics. 2006 Jul 15;22(14):1682-9. doi: 10.1093/bioinformatics/btl183. Epub 2006 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验