Li Y P, Huang G H, Yang Z F, Chen X
College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
Waste Manag. 2009 Jul;29(7):2165-77. doi: 10.1016/j.wasman.2008.12.011. Epub 2009 Jan 25.
In this study, an inexact fuzzy-stochastic constraint-softened programming method is developed for municipal solid waste (MSW) management under uncertainty. The developed method can deal with multiple uncertainties presented in terms of fuzzy sets, interval values and random variables. Moreover, a number of violation levels for the system constraints are allowed. This is realized through introduction of violation variables to soften system constraints, such that the model's decision space can be expanded under demanding conditions. This can help generate a range of decision alternatives under various conditions, allowing in-depth analyses of tradeoffs among economic objective, satisfaction degree, and constraint-violation risk. The developed method is applied to a case study of planning a MSW management system. The uncertain and dynamic information can be incorporated within a multi-layer scenario tree; revised decisions are permitted in each time period based on the realized values of uncertain events. Solutions associated with different satisfaction degree levels have been generated, corresponding to different constraint-violation risks. They are useful for supporting decisions of waste flow allocation and system-capacity expansion within a multistage context.
在本研究中,开发了一种不精确模糊随机约束软化规划方法,用于不确定性条件下的城市固体废物(MSW)管理。所开发的方法能够处理以模糊集、区间值和随机变量形式呈现的多种不确定性。此外,允许系统约束存在一定数量的违反水平。这是通过引入违反变量来软化系统约束实现的,从而使模型的决策空间在苛刻条件下能够得到扩展。这有助于在各种条件下生成一系列决策备选方案,进而深入分析经济目标、满意度和约束违反风险之间的权衡。所开发的方法应用于一个城市固体废物管理系统规划的案例研究。不确定和动态信息可以纳入多层情景树中;基于不确定事件的实现值,允许在每个时间段内修订决策。已生成与不同满意度水平相关的解决方案,对应于不同的约束违反风险。它们有助于在多阶段背景下支持废物流分配和系统容量扩展的决策。