Suppr超能文献

基于关联规则分类的蛋白质-蛋白质相互作用类型预测

Prediction of protein-protein interaction types using association rule based classification.

作者信息

Park Sung Hee, Reyes José A, Gilbert David R, Kim Ji Woong, Kim Sangsoo

机构信息

Department of Bioinformatics & Life Science, Soongsil University, Seoul, Korea.

出版信息

BMC Bioinformatics. 2009 Jan 28;10:36. doi: 10.1186/1471-2105-10-36.

Abstract

BACKGROUND

Protein-protein interactions (PPI) can be classified according to their characteristics into, for example obligate or transient interactions. The identification and characterization of these PPI types may help in the functional annotation of new protein complexes and in the prediction of protein interaction partners by knowledge driven approaches.

RESULTS

This work addresses pattern discovery of the interaction sites for four different interaction types to characterize and uses them for the prediction of PPI types employing Association Rule Based Classification (ARBC) which includes association rule generation and posterior classification. We incorporated domain information from protein complexes in SCOP proteins and identified 354 domain-interaction sites. 14 interface properties were calculated from amino acid and secondary structure composition and then used to generate a set of association rules characterizing these domain-interaction sites employing the APRIORI algorithm. Our results regarding the classification of PPI types based on a set of discovered association rules shows that the discriminative ability of association rules can significantly impact on the prediction power of classification models. We also showed that the accuracy of the classification can be improved through the use of structural domain information and also the use of secondary structure content.

CONCLUSION

The advantage of our approach is that we can extract biologically significant information from the interpretation of the discovered association rules in terms of understandability and interpretability of rules. A web application based on our method can be found at http://bioinfo.ssu.ac.kr/~shpark/picasso/

摘要

背景

蛋白质-蛋白质相互作用(PPI)可根据其特征分为例如 obligate 或瞬时相互作用等类型。这些 PPI 类型的识别和表征可能有助于新蛋白质复合物的功能注释以及通过知识驱动方法预测蛋白质相互作用伙伴。

结果

这项工作致力于发现四种不同相互作用类型的相互作用位点模式,以进行表征,并利用基于关联规则分类(ARBC,包括关联规则生成和后续分类)来预测 PPI 类型。我们整合了 SCOP 蛋白中蛋白质复合物的结构域信息,识别出 354 个结构域-相互作用位点。根据氨基酸和二级结构组成计算了 14 种界面属性,然后使用 APRIORI 算法生成一组表征这些结构域-相互作用位点的关联规则。我们基于一组发现的关联规则对 PPI 类型进行分类的结果表明,关联规则的判别能力会对分类模型的预测能力产生显著影响。我们还表明,通过使用结构域信息以及二级结构内容,可以提高分类的准确性。

结论

我们方法的优势在于,从发现的关联规则的可理解性和可解释性角度,我们能够从对这些规则的解读中提取具有生物学意义的信息。基于我们方法的网络应用可在 http://bioinfo.ssu.ac.kr/~shpark/picasso/ 找到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6d2/2667511/b23e24f4ac88/1471-2105-10-36-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验