Gray Thomas G
Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
Chemistry. 2009 Mar 2;15(11):2581-93. doi: 10.1002/chem.200800152.
Same but different: DFT calculations on hexanuclear tungsten(II) halide clusters W(6)X(8)X'(6) (X, X'=Cl, Br, I) indicate a breakdown in the isoelectronic analogy between themselves and the isostructural rhenium(III) chalcogenide clusters Re(6)S(8)X(6) (see figure).The hexanuclear tungsten(II) halide clusters and the sulfido-halide clusters of rhenium(III) are subsets of a broad system of 24-electron metal-metal bonded assemblies that share a common structure. Tungsten(II) halide clusters and rhenium(III) sulfide clusters luminesce from triplet excited states upon ultraviolet or visible excitation; emission from both cluster series has been extensively characterized elsewhere. Reported here are density-functional theory studies of the nine permutations of W(6)X(8)X'(6) (X, X'=Cl, Br, I). Ground-state properties including geometries, harmonic vibrational frequencies, and orbital energy-level diagrams, have been calculated. Comparison is made to the sulfide clusters of rhenium(III), of which Re(6)S(8)Cl(6) is representative. W(6)X(8)X'(6) and Re(6)S(8)Cl(6) possess disparate electronic structures owing to the greater covalency of the metal-sulfur bond and hence of the Re(6)S(8) core. Low-lying virtual orbitals are raised in energy in Re(6)S(8)Cl(6) with the result that the LUMO+7 (or LUMO+8 in some cases) of tungsten(II) halide clusters is the LUMO of Re(6)S(8)Cl(6) species. An inversion of the HOMO and HOMO-1 between the two cluster series also occurs. Time-dependent density-functional calculations using asymptotically correct functionals do not recapture the experimentally observed periodic trend in W(6)X(14) luminescence (E(em) increasing in the order W(6)Cl(14) < W(6)Br(14) < W(6)I(14)), predicting instead that emission energies decrease with incorporation of the heavier halides. This circumstance is either a gross failure of the time-dependent formalism of DFT or it indicates extensive multistate emission in W(6)X(8)X'(6) clusters. The inapplicability of isoelectronic analogies between clusters of Group 6 and Group 7 is emphasized.
对六核卤化钨(II)簇合物[W₆X₈X′₆]²⁻(X,X′ = Cl、Br、I)的密度泛函理论(DFT)计算表明,它们与同结构的铼(III)硫族化物簇合物[Re₆S₈X₆]⁴⁻(见图)之间的等电子体类比关系并不成立。六核卤化钨(II)簇合物和铼(III)的硫卤化物簇合物是一个具有共同结构的24电子金属 - 金属键合组装体广泛体系的子集。卤化钨(II)簇合物和硫化铼(III)簇合物在紫外或可见光激发下从三重激发态发光;这两个簇合物系列的发射在其他地方已有广泛的表征。本文报道了[W₆X₈X′₆]²⁻(X,X′ = Cl、Br、I)九种排列的密度泛函理论研究。计算了包括几何结构、简谐振动频率和轨道能级图在内的基态性质。并与铼(III)的硫化物簇合物进行了比较,其中[Re₆S₈Cl₆]⁴⁻具有代表性。由于金属 - 硫键以及因此[Re₆S₈]²⁺核心具有更大的共价性,[W₆X₈X′₆]²⁻和[Re₆S₈Cl₆]⁴⁻具有不同的电子结构。在[Re₆S₈Cl₆]⁴⁻中,低能级虚轨道的能量升高,结果卤化钨(II)簇合物的LUMO + 7(在某些情况下为LUMO + 8)是[Re₆S₈Cl₆]⁴⁻物种的LUMO。两个簇合物系列之间还发生了HOMO和HOMO - 1的反转。使用渐近正确泛函的含时密度泛函计算没有重现实验观察到的[W₆X₁₄]²⁻发光的周期性趋势(发射能量按[W₆Cl₁₄]²⁻ < [W₆Br₁₄]²⁻ < [W₆I₁₄]²⁻的顺序增加),而是预测发射能量会随着较重卤化物的掺入而降低。这种情况要么是DFT含时形式的严重失败,要么表明[W₆X₈X′₆]²⁻簇合物中存在广泛的多态发射。强调了第6族和第7族簇合物之间等电子体类比的不适用性。