Várnai Péter, Hunyady László, Balla Tamas
Department of Physiology, Semmelweis University Faculty of Medicine, H-1088, Puskin u. 9, Budapest, Hungary.
Trends Pharmacol Sci. 2009 Mar;30(3):118-28. doi: 10.1016/j.tips.2008.11.005. Epub 2009 Jan 31.
Rapid changes in cytosolic Ca(2+) concentrations Ca(2+) are the most commonly used signals in biology to regulate a whole host of cellular functions including contraction, secretion and gene activation. A widely utilized form of Ca(2+) influx is termed store-operated Ca(2+) entry (SOCE) owing to its control by the Ca(2+) content of the endoplasmic reticulum (ER). The underlying molecular mechanism of SOCE has eluded identification until recently when two groups of proteins, the ER Ca(2+) sensors stromal interaction molecule (STIM)1 and STIM2 and the plasma-membrane channels Orai1, Orai2 and Orai3, have been identified. These landmark discoveries have enabled impressive progress in clarifying how these proteins work in concert and what developmental and cellular processes require their participation most. As we begin to better understand the biology of the STIM and Orai proteins, the attention to the pharmacological tools to influence their functions quickly follow suit. Here, we briefly summarize recent developments in this exciting area of Ca(2+) signaling.
胞质Ca(2+)浓度Ca(2+)的快速变化是生物学中最常用的信号,用于调节包括收缩、分泌和基因激活在内的一系列细胞功能。一种广泛利用的Ca(2+)内流形式被称为储存操纵性Ca(2+)内流(SOCE),这是因为它受内质网(ER)中Ca(2+)含量的控制。直到最近,当两组蛋白质,即内质网Ca(2+)传感器基质相互作用分子(STIM)1和STIM2以及质膜通道Orai1、Orai2和Orai3被鉴定出来时,SOCE的潜在分子机制才得以明确。这些具有里程碑意义的发现使得在阐明这些蛋白质如何协同工作以及哪些发育和细胞过程最需要它们参与方面取得了令人瞩目的进展。随着我们开始更好地理解STIM和Orai蛋白的生物学特性,紧接着人们就开始关注影响其功能的药理学工具。在这里,我们简要总结一下这个令人兴奋的Ca(2+)信号领域的最新进展。