Suppr超能文献

STIM1 C 端的胞质内同源寡聚化及调节结构域决定与 ORAI1 通道的偶联。

A Cytosolic Homomerization and a Modulatory Domain within STIM1 C Terminus Determine Coupling to ORAI1 Channels.

作者信息

Muik Martin, Fahrner Marc, Derler Isabella, Schindl Rainer, Bergsmann Judith, Frischauf Irene, Groschner Klaus, Romanin Christoph

机构信息

Institute of Biophysics, University of Linz, A-4040 Linz.

出版信息

J Biol Chem. 2009 Mar 27;284(13):8421-6. doi: 10.1074/jbc.C800229200. Epub 2009 Feb 3.

Abstract

In immune cells, generation of sustained Ca(2+) levels is mediated by the Ca(2+) release-activated Ca(2+) (CRAC) current. Molecular key players in this process comprise the stromal interaction molecule 1 (STIM1) that functions as a Ca(2+) sensor in the endoplasmic reticulum and ORAI1 located in the plasma membrane. Depletion of endoplasmic reticulum Ca(2+) stores leads to STIM1 multimerization into discrete puncta, which co-cluster with ORAI1 to couple to and activate ORAI1 channels. The cytosolic C terminus of STIM1 is sufficient to activate ORAI1 currents independent of store depletion. Here we identified an ORAI1-activating small fragment (OASF, amino acids 233-450/474) within STIM1 C terminus comprising the two coiled-coil domains and additional 50-74 amino acids that exhibited enhanced interaction with ORAI1, resulting in 3-fold increased Ca(2+) currents. This OASF, similar to the complete STIM1 C terminus, displayed the ability to homomerize by a novel assembly domain that occurred subsequent to the coiled-coil domains. A smaller fragment (amino acids 233-420) generated by a further deletion of 30 amino acids substantially reduced the ability to homomerize concomitant to a loss of coupling to as well as activation of ORAI1. Extending OASF by 35 amino acids (233-485) did not alter homomerization but substantially decreased efficiency in coupling to and activation of ORAI1. Expressing OASF in rat basophilic leukemia (RBL) mast cells demonstrated its enhanced plasma membrane targeting associated with 2.5-fold larger CRAC currents in comparison with the complete STIM1 C terminus. In aggregate, we have identified two cytosolic key regions within STIM1 C terminus that control ORAI1/CRAC activation: a homomerization domain indispensable for coupling to ORAI1 and a modulatory domain that controls the extent of coupling to ORAI1.

摘要

在免疫细胞中,持续的钙离子(Ca(2+))水平的产生是由钙离子释放激活的钙离子(CRAC)电流介导的。这一过程中的分子关键参与者包括在内质网中作为钙离子传感器发挥作用的基质相互作用分子1(STIM1)和位于质膜上的ORAI1。内质网钙离子储存的耗尽导致STIM1多聚化形成离散的点状结构,这些点状结构与ORAI1共同聚集以偶联并激活ORAI1通道。STIM1的胞质C末端足以独立于储存耗尽而激活ORAI1电流。在此,我们在STIM1 C末端鉴定出一个激活ORAI1的小片段(OASF,氨基酸233 - 450/474),其包含两个卷曲螺旋结构域以及另外50 - 74个氨基酸,该片段与ORAI1表现出增强的相互作用,导致钙离子电流增加了3倍。这个OASF与完整的STIM1 C末端相似,通过一个位于卷曲螺旋结构域之后的新型组装结构域显示出同源寡聚化的能力。通过进一步缺失30个氨基酸产生的一个较小片段(氨基酸233 - 420),在与ORAI1的偶联以及激活能力丧失的同时,同源寡聚化能力大幅降低。将OASF延长35个氨基酸(233 - 485)并没有改变同源寡聚化,但在与ORAI1的偶联以及激活效率上大幅降低。在大鼠嗜碱性白血病(RBL)肥大细胞中表达OASF表明,与完整的STIM1 C末端相比,其增强了质膜靶向性,伴随CRAC电流增大2.5倍。总的来说,我们在STIM1 C末端鉴定出两个控制ORAI1/CRAC激活的胞质关键区域:一个对于与ORAI1偶联不可或缺的同源寡聚化结构域和一个控制与ORAI1偶联程度的调节结构域。

相似文献

1
A Cytosolic Homomerization and a Modulatory Domain within STIM1 C Terminus Determine Coupling to ORAI1 Channels.
J Biol Chem. 2009 Mar 27;284(13):8421-6. doi: 10.1074/jbc.C800229200. Epub 2009 Feb 3.
3
Defects in the STIM1 SOARα2 domain affect multiple steps in the CRAC channel activation cascade.
Cell Mol Life Sci. 2021 Oct;78(19-20):6645-6667. doi: 10.1007/s00018-021-03933-4. Epub 2021 Sep 8.
4
Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation.
J Biol Chem. 2008 Mar 21;283(12):8014-22. doi: 10.1074/jbc.M708898200. Epub 2008 Jan 10.
6
How strict is the correlation between STIM1 and Orai1 expression, puncta formation, and ICRAC activation?
Am J Physiol Cell Physiol. 2008 Nov;295(5):C1133-40. doi: 10.1152/ajpcell.00306.2008. Epub 2008 Sep 3.
8
Voltage gating at the selectivity filter of the Ca2+ release-activated Ca2+ channel induced by mutation of the Orai1 protein.
J Biol Chem. 2008 May 30;283(22):14938-45. doi: 10.1074/jbc.M702208200. Epub 2007 Dec 20.
9
STIM1 couples to ORAI1 via an intramolecular transition into an extended conformation.
EMBO J. 2011 May 4;30(9):1678-89. doi: 10.1038/emboj.2011.79. Epub 2011 Mar 22.
10
A minimal regulatory domain in the C terminus of STIM1 binds to and activates ORAI1 CRAC channels.
Biochem Biophys Res Commun. 2009 Jul 17;385(1):49-54. doi: 10.1016/j.bbrc.2009.05.020. Epub 2009 May 9.

引用本文的文献

1
A subset of Orai1α and Orai1β subunits heteromerizes to form CRAC channels.
Cell Commun Signal. 2025 Jun 2;23(1):260. doi: 10.1186/s12964-025-02271-3.
2
Feedback modulation of Orai1α and Orai1β protein content mediated by STIM proteins.
J Cell Physiol. 2025 Jan;240(1):e31450. doi: 10.1002/jcp.31450. Epub 2024 Oct 2.
3
Essential role of N-terminal SAM regions in STIM1 multimerization and function.
Proc Natl Acad Sci U S A. 2024 May 21;121(21):e2318874121. doi: 10.1073/pnas.2318874121. Epub 2024 May 16.
4
Synthetic Biology Meets Ca Release-Activated Ca Channel-Dependent Immunomodulation.
Cells. 2024 Mar 7;13(6):468. doi: 10.3390/cells13060468.
5
Regulatory mechanisms controlling store-operated calcium entry.
Front Physiol. 2023 Dec 19;14:1330259. doi: 10.3389/fphys.2023.1330259. eCollection 2023.
6
The Ca Sensor STIM in Human Diseases.
Biomolecules. 2023 Aug 22;13(9):1284. doi: 10.3390/biom13091284.
7
CRAC and SK Channels: Their Molecular Mechanisms Associated with Cancer Cell Development.
Cancers (Basel). 2022 Dec 23;15(1):101. doi: 10.3390/cancers15010101.
8
Similarities and Differences between the Orai1 Variants: Orai1α and Orai1β.
Int J Mol Sci. 2022 Nov 23;23(23):14568. doi: 10.3390/ijms232314568.
9
STIM and Orai Mediated Regulation of Calcium Signaling in Age-Related Diseases.
Front Aging. 2022 Apr 19;3:876785. doi: 10.3389/fragi.2022.876785. eCollection 2022.
10
The Role of Lipids in CRAC Channel Function.
Biomolecules. 2022 Feb 23;12(3):352. doi: 10.3390/biom12030352.

本文引用的文献

1
STIM1 gates TRPC channels, but not Orai1, by electrostatic interaction.
Mol Cell. 2008 Nov 7;32(3):439-48. doi: 10.1016/j.molcel.2008.09.020.
2
STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy.
J Physiol. 2008 Nov 15;586(22):5383-401. doi: 10.1113/jphysiol.2008.162503. Epub 2008 Oct 2.
3
The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers.
Nature. 2008 Nov 6;456(7218):116-20. doi: 10.1038/nature07338. Epub 2008 Sep 28.
4
The STIM/Orai coupling machinery.
Channels (Austin). 2008 Jul-Aug;2(4):261-8. doi: 10.4161/chan.2.4.6705. Epub 2008 Jul 21.
5
Cytosolic Ca2+ prevents the subplasmalemmal clustering of STIM1: an intrinsic mechanism to avoid Ca2+ overload.
J Cell Sci. 2008 Oct 1;121(Pt 19):3133-9. doi: 10.1242/jcs.034496. Epub 2008 Sep 2.
6
Functional stoichiometry of the unitary calcium-release-activated calcium channel.
Proc Natl Acad Sci U S A. 2008 Sep 9;105(36):13668-73. doi: 10.1073/pnas.0806499105. Epub 2008 Aug 29.
7
Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation.
Nature. 2008 Jul 24;454(7203):538-42. doi: 10.1038/nature07065. Epub 2008 Jul 2.
8
Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: puncta and distal caps.
Mol Biol Cell. 2008 Jul;19(7):2802-17. doi: 10.1091/mbc.e08-02-0146. Epub 2008 Apr 30.
9
Store-dependent and -independent modes regulating Ca2+ release-activated Ca2+ channel activity of human Orai1 and Orai3.
J Biol Chem. 2008 Jun 20;283(25):17662-71. doi: 10.1074/jbc.M801536200. Epub 2008 Apr 17.
10
Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation.
J Biol Chem. 2008 Mar 21;283(12):8014-22. doi: 10.1074/jbc.M708898200. Epub 2008 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验