Suppr超能文献

负载神经干细胞和雪旺细胞的可生物降解聚合物支架可支持横断脊髓中的轴突再生。

Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord.

作者信息

Olson Heather E, Rooney Gemma E, Gross LouAnn, Nesbitt Jarred J, Galvin Katherine E, Knight Andrew, Chen BingKun, Yaszemski Michael J, Windebank Anthony J

机构信息

Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.

出版信息

Tissue Eng Part A. 2009 Jul;15(7):1797-805. doi: 10.1089/ten.tea.2008.0364.

Abstract

Biodegradable polymer scaffolds provide an excellent approach to quantifying critical factors necessary for restoration of function after a transection spinal cord injury. Neural stem cells (NSCs) and Schwann cells (SCs) support axonal regeneration. This study examines the compatibility of NSCs and SCs with the poly-lactic-co-glycolic acid polymer scaffold and quantitatively assesses their potential to promote regeneration after a spinal cord transection injury in rats. NSCs were cultured as neurospheres and characterized by immunostaining for nestin (NSCs), glial fibrillary acidic protein (GFAP) (astrocytes), betaIII-tubulin (immature neurons), oligodendrocyte-4 (immature oligodendrocytes), and myelin oligodendrocyte (mature oligodendrocytes), while SCs were characterized by immunostaining for S-100. Rats with transection injuries received scaffold implants containing NSCs (n=17), SCs (n=17), and no cells (control) (n=8). The degree of axonal regeneration was determined by counting neurofilament-stained axons through the scaffold channels 1 month after transplantation. Serial sectioning through the scaffold channels in NSC- and SC-treated groups revealed the presence of nestin, neurofilament, S-100, and betaIII tubulin-positive cells. GFAP-positive cells were only seen at the spinal cord-scaffold border. There were significantly more axons in the NSC- and SC- treated groups compared to the control group. In conclusion, biodegradable scaffolds with aligned columns seeded with NSCs or SCs facilitate regeneration across the transected spinal cord. Further, these multichannel biodegradable polymer scaffolds effectively serve as platforms for quantitative analysis of axonal regeneration.

摘要

可生物降解的聚合物支架为量化脊髓横断损伤后功能恢复所需的关键因素提供了一种极佳的方法。神经干细胞(NSCs)和雪旺细胞(SCs)支持轴突再生。本研究检测了NSCs和SCs与聚乳酸-乙醇酸聚合物支架的相容性,并定量评估了它们在大鼠脊髓横断损伤后促进再生的潜力。将NSCs培养为神经球,并通过对巢蛋白(NSCs)、胶质纤维酸性蛋白(GFAP)(星形胶质细胞)、βIII微管蛋白(未成熟神经元)、少突胶质细胞-4(未成熟少突胶质细胞)和髓鞘少突胶质细胞(成熟少突胶质细胞)进行免疫染色来鉴定,而SCs则通过对S-100进行免疫染色来鉴定。患有横断损伤的大鼠接受含有NSCs(n = 17)、SCs(n = 17)和无细胞(对照)(n = 8)的支架植入物。移植1个月后,通过计数穿过支架通道的神经丝染色轴突来确定轴突再生的程度。对NSC和SC治疗组的支架通道进行连续切片,发现存在巢蛋白、神经丝、S-100和βIII微管蛋白阳性细胞。仅在脊髓-支架边界处可见GFAP阳性细胞。与对照组相比,NSC和SC治疗组的轴突明显更多。总之,接种了NSCs或SCs的具有排列柱的可生物降解支架有助于脊髓横断处的再生。此外,这些多通道可生物降解聚合物支架有效地作为轴突再生定量分析的平台。

相似文献

5
Axon regeneration through scaffold into distal spinal cord after transection.
J Neurotrauma. 2009 Oct;26(10):1759-71. doi: 10.1089/neu.2008-0610.
9
Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord.
Biomaterials. 2016 Dec;109:40-54. doi: 10.1016/j.biomaterials.2016.08.005. Epub 2016 Aug 4.

引用本文的文献

1
Engineered Healing: Synergistic Use of Schwann Cells and Biomaterials for Spinal Cord Regeneration.
Int J Mol Sci. 2025 Aug 16;26(16):7922. doi: 10.3390/ijms26167922.
2
Advance in pediatric spinal cord injury.
Pediatr Discov. 2024 Mar 22;2(1):e55. doi: 10.1002/pdi3.55. eCollection 2024 Mar.
3
Combinatorial therapies for spinal cord injury repair.
Neural Regen Res. 2025 May 1;20(5):1293-1308. doi: 10.4103/NRR.NRR-D-24-00061. Epub 2024 Jun 3.
4
Combinatorial strategies for cell transplantation in traumatic spinal cord injury.
Front Neurosci. 2024 Mar 6;18:1349446. doi: 10.3389/fnins.2024.1349446. eCollection 2024.
5
Chitosan Scaffolds as Microcarriers for Dynamic Culture of Human Neural Stem Cells.
Pharmaceutics. 2023 Jul 15;15(7):1957. doi: 10.3390/pharmaceutics15071957.
7
Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury.
Int J Mol Sci. 2023 Jan 28;24(3):2528. doi: 10.3390/ijms24032528.
8
Advances in Neural Stem Cell Therapy for Spinal Cord Injury: Safety, Efficacy, and Future Perspectives.
Neurospine. 2022 Dec;19(4):946-960. doi: 10.14245/ns.2244658.329. Epub 2022 Nov 10.
9
Application and prospects of high-throughput screening for neurogenesis.
World J Stem Cells. 2022 Jun 26;14(6):393-419. doi: 10.4252/wjsc.v14.i6.393.

本文引用的文献

1
Methods for in vitro characterization of multichannel nerve tubes.
J Biomed Mater Res A. 2008 Mar 1;84(3):643-51. doi: 10.1002/jbm.a.31298.
2
Multiple-channel scaffolds to promote spinal cord axon regeneration.
Biomaterials. 2006 Jan;27(3):419-29. doi: 10.1016/j.biomaterials.2005.07.045. Epub 2005 Aug 31.
4
Quantitative analysis of interconnectivity of porous biodegradable scaffolds with micro-computed tomography.
J Biomed Mater Res A. 2004 Nov 1;71(2):258-67. doi: 10.1002/jbm.a.30138.
5
Biopolymers and biodegradable smart implants for tissue regeneration after spinal cord injury.
Curr Opin Neurol. 2003 Dec;16(6):711-5. doi: 10.1097/01.wco.0000102620.38669.3e.
7
Biocompatibility of implantable synthetic polymeric drug carriers: focus on brain biocompatibility.
Biomaterials. 2003 Aug;24(19):3311-31. doi: 10.1016/s0142-9612(03)00161-3.
9
Cellular characterization of epidermal growth factor-expanded free-floating neurospheres.
J Histochem Cytochem. 2003 Jan;51(1):89-103. doi: 10.1177/002215540305100111.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验