Andreas Kristin, Häupl Thomas, Lübke Carsten, Ringe Jochen, Morawietz Lars, Wachtel Anja, Sittinger Michael, Kaps Christian
Tissue Engineering Laboratory and Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology, Charité-Universitätsmedizin Berlin, Tucholskystrasse 2, 10117 Berlin, Germany.
Arthritis Res Ther. 2009;11(1):R15. doi: 10.1186/ar2605. Epub 2009 Feb 3.
Rheumatoid arthritis (RA) leads to progressive destruction of articular cartilage. This study aimed to disclose major mechanisms of antirheumatic drug action on human chondrocytes and to reveal marker and pharmacological target genes that are involved in cartilage dysfunction and regeneration.
An interactive in vitro cultivation system composed of human chondrocyte alginate cultures and conditioned supernatant of SV40 T-antigen immortalised human synovial fibroblasts was used. Chondrocyte alginate cultures were stimulated with supernatant of RA synovial fibroblasts, of healthy donor synovial fibroblasts, and of RA synovial fibroblasts that have been antirheumatically treated with disease-modifying antirheumatic drugs (DMARDs) (azathioprine, gold sodium thiomalate, chloroquine phosphate, and methotrexate), nonsteroidal anti-inflammatory drugs (NSAIDs) (piroxicam and diclofenac), or steroidal anti-inflammatory drugs (SAIDs) (methylprednisolone and prednisolone). Chondrocyte gene expression profile was analysed using microarrays. Real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay were performed for validation of microarray data.
Genome-wide expression analysis revealed 110 RA-related genes in human chondrocytes: expression of catabolic mediators (inflammation, cytokines/chemokines, and matrix degradation) was induced, and expression of anabolic mediators (matrix synthesis and proliferation/differentiation) was repressed. Potential marker genes to define and influence cartilage/chondrocyte integrity and regeneration were determined and include already established genes (COX-2, CXCR-4, IL-1RN, IL-6/8, MMP-10/12, and TLR-2) and novel genes (ADORA2A, BCL2-A1, CTGF, CXCR-7, CYR-61, HSD11B-1, IL-23A, MARCKS, MXRA-5, NDUFA4L2, NR4A3, SMS, STS, TNFAIP-2, and TXNIP). Antirheumatic treatment with SAIDs showed complete and strong reversion of RA-related gene expression in human chondrocytes, whereas treatment with NSAIDs and the DMARD chloroquine phosphate had only moderate to minor effects. Treatment with the DMARDs azathioprine, gold sodium thiomalate, and methotrexate efficiently reverted chondrocyte RA-related gene expression toward the 'healthy' level. Pathways of cytokine-cytokine receptor interaction, transforming growth factor-beta/Toll-like receptor/Jak-STAT (signal transducer and activator of transcription) signalling and extracellular matrix receptor interaction were targeted by antirheumatics.
Our findings indicate that RA-relevant stimuli result in the molecular activation of catabolic and inflammatory processes in human chondrocytes that are reverted by antirheumatic treatment. Candidate genes that evolved in this study for new therapeutic approaches include suppression of specific immune responses (COX-2, IL-23A, and IL-6) and activation of cartilage regeneration (CTGF and CYR-61).
类风湿性关节炎(RA)会导致关节软骨的渐进性破坏。本研究旨在揭示抗风湿药物对人软骨细胞作用的主要机制,并找出参与软骨功能障碍和再生的标记基因和药理学靶基因。
使用由人软骨细胞藻酸盐培养物和SV40 T抗原永生化人滑膜成纤维细胞的条件上清液组成的交互式体外培养系统。用类风湿性关节炎滑膜成纤维细胞、健康供体滑膜成纤维细胞以及用改善病情抗风湿药物(DMARDs)(硫唑嘌呤、硫代苹果酸金钠、磷酸氯喹和甲氨蝶呤)、非甾体抗炎药(NSAIDs)(吡罗昔康和双氯芬酸)或甾体抗炎药(SAIDs)(甲泼尼龙和泼尼松龙)进行抗风湿治疗后的类风湿性关节炎滑膜成纤维细胞的上清液刺激软骨细胞藻酸盐培养物。使用微阵列分析软骨细胞基因表达谱。进行实时逆转录 - 聚合酶链反应和酶联免疫吸附测定以验证微阵列数据。
全基因组表达分析揭示了人软骨细胞中110个与RA相关的基因:分解代谢介质(炎症、细胞因子/趋化因子和基质降解)的表达被诱导,而合成代谢介质(基质合成和增殖/分化)的表达被抑制。确定了用于定义和影响软骨/软骨细胞完整性及再生的潜在标记基因,包括已确定的基因(COX - 2、CXCR - 4、IL - 1RN、IL - 6/8、MMP - 10/12和TLR - 2)以及新基因(ADORA2A、BCL2 - A1、CTGF、CXCR - 7、CYR - 61、HSD11B - 1、IL - 23A、MARCKS、MXRA - 5、NDUFA4L2、NR4A3、SMS、STS、TNFAIP - 2和TXNIP)。用SAIDs进行抗风湿治疗显示人软骨细胞中RA相关基因表达完全且强烈逆转,而用NSAIDs和DMARD磷酸氯喹治疗只有中度至轻度影响。用DMARDs硫唑嘌呤、硫代苹果酸金钠和甲氨蝶呤治疗可有效将软骨细胞RA相关基因表达逆转至“健康”水平。抗风湿药物靶向细胞因子 - 细胞因子受体相互作用、转化生长因子 - β/Toll样受体/Jak - STAT(信号转导和转录激活因子)信号传导以及细胞外基质受体相互作用途径。
我们的研究结果表明,与RA相关的刺激会导致人软骨细胞中分解代谢和炎症过程的分子激活,而抗风湿治疗可使其逆转。本研究中为新治疗方法而出现的候选基因包括抑制特定免疫反应(COX - 2、IL - 23A和IL - 6)以及激活软骨再生(CTGF和CYR - 61)。