Suppr超能文献

用于实时尖峰序列解码的神经元活动压缩与分布式传感

Compressed and distributed sensing of neuronal activity for real time spike train decoding.

作者信息

Aghagolzadeh Mehdi, Oweiss Karim

机构信息

Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2009 Apr;17(2):116-27. doi: 10.1109/TNSRE.2009.2012711. Epub 2009 Feb 3.

Abstract

Multivariate point processes are increasingly being used to model neuronal response properties in the cortex. Estimating the conditional intensity functions underlying these processes is important to characterize and decode the firing patterns of cortical neurons. This paper proposes a new approach for estimating these intensity functions directly from a compressed representation of the neurons' extracellular recordings. The approach is based on exploiting a sparse representation of the extracellular spike waveforms, previously demonstrated to yield near-optimal denoising and compression properties. We show that by restricting this sparse representation to a subset of projections that simultaneously preserve features of the spike waveforms in addition to the temporal characteristics of the underlying intensity functions, we can reasonably approximate the instantaneous firing rates of the recorded neurons with variable tuning characteristics across a multitude of time scales. Such feature is highly desirable to detect subtle temporal differences in neuronal firing characteristics from single-trial data. An added advantage of this approach is that it eliminates multiple steps from the typical processing path of neural signals that are customarily performed for instantaneous neural decoding. We demonstrate the decoding performance of the approach using a stochastic cosine tuning model of motor cortical activity during a natural, nongoal-directed 2-D arm movement.

摘要

多元点过程越来越多地被用于对皮层中的神经元反应特性进行建模。估计这些过程背后的条件强度函数对于表征和解读皮层神经元的放电模式很重要。本文提出了一种直接从神经元细胞外记录的压缩表示中估计这些强度函数的新方法。该方法基于利用细胞外尖峰波形的稀疏表示,此前已证明这种表示能产生近乎最优的去噪和压缩特性。我们表明,通过将这种稀疏表示限制在一组投影中,这些投影除了保留潜在强度函数的时间特征外,还能同时保留尖峰波形的特征,我们可以合理地近似记录神经元在多个时间尺度上具有可变调谐特性的瞬时放电率。这种特征对于从单次试验数据中检测神经元放电特征的细微时间差异非常理想。该方法的另一个优点是,它消除了通常为瞬时神经解码而执行的神经信号典型处理路径中的多个步骤。我们使用自然的、非目标导向的二维手臂运动期间运动皮层活动的随机余弦调谐模型来展示该方法的解码性能。

相似文献

1
Compressed and distributed sensing of neuronal activity for real time spike train decoding.
IEEE Trans Neural Syst Rehabil Eng. 2009 Apr;17(2):116-27. doi: 10.1109/TNSRE.2009.2012711. Epub 2009 Feb 3.
2
Clusterless Decoding of Position from Multiunit Activity Using a Marked Point Process Filter.
Neural Comput. 2015 Jul;27(7):1438-60. doi: 10.1162/NECO_a_00744. Epub 2015 May 14.
3
Decoding arm speed during reaching.
Nat Commun. 2018 Dec 7;9(1):5243. doi: 10.1038/s41467-018-07647-3.
4
Bayesian population decoding of motor cortical activity using a Kalman filter.
Neural Comput. 2006 Jan;18(1):80-118. doi: 10.1162/089976606774841585.
6
To sort or not to sort: the impact of spike-sorting on neural decoding performance.
J Neural Eng. 2014 Oct;11(5):056005. doi: 10.1088/1741-2560/11/5/056005. Epub 2014 Aug 1.
8
An analysis of hippocampal spatio-temporal representations using a Bayesian algorithm for neural spike train decoding.
IEEE Trans Neural Syst Rehabil Eng. 2005 Jun;13(2):131-6. doi: 10.1109/TNSRE.2005.847368.
9
Monte Carlo point process estimation of electromyographic envelopes from motor cortical spikes for brain-machine interfaces.
J Neural Eng. 2015 Dec;12(6):066014. doi: 10.1088/1741-2560/12/6/066014. Epub 2015 Oct 15.
10
Local-learning-based neuron selection for grasping gesture prediction in motor brain machine interfaces.
J Neural Eng. 2013 Apr;10(2):026008. doi: 10.1088/1741-2560/10/2/026008. Epub 2013 Feb 21.

引用本文的文献

1
Wavelet Transforms Significantly Sparsify and Compress Tactile Interactions.
Sensors (Basel). 2024 Jun 29;24(13):4243. doi: 10.3390/s24134243.
2
Tracking single units in chronic, large scale, neural recordings for brain machine interface applications.
Front Neuroeng. 2014 Jul 8;7:23. doi: 10.3389/fneng.2014.00023. eCollection 2014.
3
Strategies for high-performance resource-efficient compression of neural spike recordings.
PLoS One. 2014 Apr 11;9(4):e93779. doi: 10.1371/journal.pone.0093779. eCollection 2014.
4
A Fully Implantable, Programmable and Multimodal Neuroprocessor for Wireless, Cortically Controlled Brain-Machine Interface Applications.
J Signal Process Syst. 2012 Dec 1;69(3):351-361. doi: 10.1007/s11265-012-0670-x. Epub 2011 Jun 15.
5
Synergistic Coding by Cortical Neural Ensembles.
IEEE Trans Inf Theory. 2010 Feb 1;56(2):875-899. doi: 10.1109/TIT.2009.2037057.

本文引用的文献

1
Area-Power Efficient VLSI Implementation of Multichannel DWT for Data Compression in Implantable Neuroprosthetics.
IEEE Trans Biomed Circuits Syst. 2007 Jun;1(2):128-35. doi: 10.1109/TBCAS.2007.907557.
3
An improved method for the estimation of firing rate dynamics using an optimal digital filter.
J Neurosci Methods. 2008 Aug 15;173(1):165-81. doi: 10.1016/j.jneumeth.2008.05.021. Epub 2008 Jun 3.
4
Temporal complexity and heterogeneity of single-neuron activity in premotor and motor cortex.
J Neurophysiol. 2007 Jun;97(6):4235-57. doi: 10.1152/jn.00095.2007. Epub 2007 Mar 21.
6
Spike count correlation increases with length of time interval in the presence of trial-to-trial variation.
Neural Comput. 2006 Nov;18(11):2583-91. doi: 10.1162/neco.2006.18.11.2583.
7
A state-space analysis for reconstruction of goal-directed movements using neural signals.
Neural Comput. 2006 Oct;18(10):2465-94. doi: 10.1162/neco.2006.18.10.2465.
8
A high-performance brain-computer interface.
Nature. 2006 Jul 13;442(7099):195-8. doi: 10.1038/nature04968.
9
Neuronal ensemble control of prosthetic devices by a human with tetraplegia.
Nature. 2006 Jul 13;442(7099):164-71. doi: 10.1038/nature04970.
10
A systems approach for data compression and latency reduction in cortically controlled brain machine interfaces.
IEEE Trans Biomed Eng. 2006 Jul;53(7):1364-77. doi: 10.1109/TBME.2006.873749.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验