Jemel Ikram, Fendri Ahmed, Gargouri Youssef, Bezzine Sofiane
Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS route de Soukra, Sfax, Tunisia.
Colloids Surf B Biointerfaces. 2009 May 1;70(2):238-42. doi: 10.1016/j.colsurfb.2008.12.035. Epub 2008 Dec 31.
Using the classical emulsified system and the monomolecular film technique, we compared several interfacial properties of dromedary pancreatic lipase (DrPL) with those of a mammal (human) and an avian (turkey) model. Like turkey pancreatic lipase (TPL) and unlike human pancreatic lipase (HPL), in the absence of colipase and bile salts, using tributyrin emulsion or monomolecular films of dicaprin at low surface pressure, DrPL hydrolyses pure tributyrin emulsion, as well as dicaprin films maintained at low surface pressures. DrPL was also able to hydrolyse triolein emulsion in the absence of any additive and despite the accumulation of long-chain free fatty acids at the interface. The difference of behaviours between the two mammal pancreatic lipases (DrPL and HPL) can be explained by the penetration capacity of each enzyme. DrPL presents a critical surface pressure value (21 m Nm(-1)) that is more important than this of HPL. Subsequently, the dromedary pancreatic lipase interacts efficiently with interfaces and it is not denaturated at high interfacial energy. A kinetic study on the surface pressure dependency, stereospecificity and regioselectivity of DrPL was performed using optically pure stereoisomers of either three dicaprin isomers containing a single hydrolysable decanoyl ester bond that were spread as monomolecular films at the air/water interface. Interestingly, in comparison with all the previously studied mammal pancreatic lipases, DrPL presents the highest preference for adjacent ester groups of dicaprin isomers (1,2-sn-dicaprin and 2,3-sn-dicaprin) at high surface pressure. Furthermore, DrPL forms a pancreatic lipase subgroup in which the stereopreference switches from sn-3 position to the sn-1 position when increasing the surface pressure.
我们使用经典乳化体系和单分子膜技术,比较了单峰驼胰脂肪酶(DrPL)与哺乳动物(人类)和禽类(火鸡)模型的几种界面特性。与火鸡胰脂肪酶(TPL)一样,与人类胰脂肪酶(HPL)不同,在没有辅脂酶和胆汁盐的情况下,使用三丁酸甘油酯乳液或在低表面压力下的二癸酸单分子膜,DrPL能够水解纯三丁酸甘油酯乳液以及保持在低表面压力下的二癸酸膜。DrPL还能够在没有任何添加剂的情况下水解三油酸甘油酯乳液,尽管长链游离脂肪酸在界面处积累。两种哺乳动物胰脂肪酶(DrPL和HPL)行为的差异可以通过每种酶的渗透能力来解释。DrPL呈现出一个临界表面压力值(21 m Nm(-1)),该值比HPL的更重要。随后,单峰驼胰脂肪酶与界面有效相互作用,并且在高界面能下不会变性。使用三种含有单个可水解癸酰酯键的二癸酸异构体的光学纯立体异构体在空气/水界面铺展成单分子膜,对DrPL的表面压力依赖性、立体特异性和区域选择性进行了动力学研究。有趣的是,与所有先前研究的哺乳动物胰脂肪酶相比,在高表面压力下,DrPL对二癸酸异构体(1,2-sn-二癸酸和2,3-sn-二癸酸)的相邻酯基表现出最高的偏好。此外,DrPL形成了一个胰脂肪酶亚组,当增加表面压力时,其立体偏好从sn-3位置切换到sn-1位置。