Suppr超能文献

肺炎支原体和人二氢叶酸还原酶抑制剂动力学的相关性与人类活性位点突变酶复合物的结构数据。

Correlations of inhibitor kinetics for Pneumocystis jirovecii and human dihydrofolate reductase with structural data for human active site mutant enzyme complexes.

机构信息

Structural Biology Department, Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 14203, USA.

出版信息

Biochemistry. 2009 Mar 3;48(8):1702-11. doi: 10.1021/bi801960h.

Abstract

To understand the role of specific active site residues in conferring selective dihydrofolate reductase (DHFR) inhibition from pathogenic organisms such as Pneumocystis carinii (pc) or Pneumocystis jirovecii (pj), the causative agent in AIDS pneumonia, it is necessary to evaluate the role of these residues in the human enzyme. We report the first kinetic parameters for DHFR from pjDHFR and pcDHFR with methotrexate (MTX), trimethoprim (TMP), and its potent analogue, PY957. We also report the mutagenesis and kinetic analysis of active site mutant proteins at positions 35 and 64 of human (h) DHFR and the crystal structure determinations of hDHFR ternary complexes of NADPH and PY957 with the wild-type DHFR enzyme, the single mutant protein, Gln35Lys, and two double mutant proteins, Gln35Ser/Asn64Ser and Gln35Ser/Asn64Phe. These substitutions place into human DHFR amino acids found at those sites in the opportunistic pathogens pcDHFR (Q35K/N64F) and pjDHFR (Q35S/N64S). The K(i) inhibition constant for PY957 showed greatest potency of the compound for the N64F single mutant protein (5.2 nM), followed by wild-type pcDHFR (K(i) 22 nM) and then wild-type hDHFR enzyme (K(i) 230 nM). Structural data reveal significant conformational changes in the binding interactions of PY957 in the hDHFR Q35S/N64F mutant protein complex compared to the other hDHFR mutant protein complexes and the pcDHFR ternary complex. The conformation of PY957 in the wild-type DHFR is similar to that observed for the single mutant protein. These data support the hypothesis that the enhanced selectivity of PY957 for pcDHFR is in part due to the contributions at positions 37 and 69 (pcDHFR numbering). This insight will help in the design of more selective inhibitors that target these opportunistic pathogens.

摘要

为了了解特定活性位点残基在赋予致病生物体(如卡氏肺囊虫(pc)或艾滋病肺炎的病原体肺孢子菌(pj))选择性二氢叶酸还原酶(DHFR)抑制方面的作用,有必要评估这些残基在人酶中的作用。我们报告了来自 pjDHFR 和 pcDHFR 的 DHFR 的第一个动力学参数,以及甲氨蝶呤(MTX)、三甲氧苄氨嘧啶(TMP)及其强效类似物 PY957。我们还报告了人(h)DHFR 活性位点突变蛋白在位置 35 和 64 的突变和动力学分析,以及 hDHFR 与 NADPH 和 PY957 的三元复合物的晶体结构测定,该酶是野生型 DHFR 酶、单突变蛋白 Gln35Lys 和两个双突变蛋白 Gln35Ser/Asn64Ser 和 Gln35Ser/Asn64Phe。这些取代将存在于机会性病原体 pcDHFR(Q35K/N64F)和 pjDHFR(Q35S/N64S)中的氨基酸置于人 DHFR 中。对于 N64F 单突变蛋白,化合物的 PY957 抑制常数(K(i))显示出最强的效力(5.2 nM),其次是野生型 pcDHFR(K(i) 22 nM),然后是野生型 hDHFR 酶(K(i) 230 nM)。结构数据显示,与其他 hDHFR 突变蛋白复合物和 pcDHFR 三元复合物相比,PY957 在 hDHFR Q35S/N64F 突变蛋白复合物中的结合相互作用发生了显著的构象变化。在野生型 DHFR 中,PY957 的构象与单突变蛋白中观察到的构象相似。这些数据支持这样的假设,即 PY957 对 pcDHFR 的选择性增强部分归因于位置 37 和 69(pcDHFR 编号)的贡献。这一见解将有助于设计更具选择性的抑制剂,以靶向这些机会性病原体。

相似文献

4
Structure-activity correlations for three pyrido[2,3-d]pyrimidine antifolates binding to human and Pneumocystis carinii dihydrofolate reductase.
Acta Crystallogr F Struct Biol Commun. 2015 Jun;71(Pt 6):799-803. doi: 10.1107/S2053230X15008468. Epub 2015 May 27.
8
Structure-based enzyme inhibitor design: modeling studies and crystal structure analysis of Pneumocystis carinii dihydrofolate reductase ternary complex with PT653 and NADPH.
Acta Crystallogr D Biol Crystallogr. 2002 Jun;58(Pt 6 Pt 2):946-54. doi: 10.1107/s090744490200505x. Epub 2002 May 29.

引用本文的文献

1
Characterization of the Three DHFRs and K65P Variant: Enhanced Substrate Affinity and Molecular Dynamics Analysis.
Protein J. 2024 Oct;43(5):935-948. doi: 10.1007/s10930-024-10228-7. Epub 2024 Aug 23.
3
A Quantitative Model to Estimate Drug Resistance in Pathogens.
J Fungi (Basel). 2016 Dec;2(4). doi: 10.3390/jof2040030. Epub 2016 Dec 5.
4
Pneumocystis jirovecii Rtt109, a novel drug target for Pneumocystis pneumonia in immunosuppressed humans.
Antimicrob Agents Chemother. 2014 Jul;58(7):3650-9. doi: 10.1128/AAC.02637-14. Epub 2014 Apr 14.
6
Trimethoprim resistance of dihydrofolate reductase variants from clinical isolates of Pneumocystis jirovecii.
Antimicrob Agents Chemother. 2013 Oct;57(10):4990-8. doi: 10.1128/AAC.01161-13. Epub 2013 Jul 29.
9
Structural analysis of Pneumocystis carinii dihydrofolate reductase complexed with NADPH and 2,4-diamino-6-[2-(5-carboxypent-1-yn-1-yl)-5-methoxybenzyl]-5-methylpyrido[2,3-d]pyrimidine.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2012 Apr 1;68(Pt 4):418-23. doi: 10.1107/S1744309112008688. Epub 2012 Mar 28.

本文引用的文献

2
2-tier bacterial and in vitro selection of active and methotrexate-resistant variants of human dihydrofolate reductase.
J Biomol Screen. 2008 Jul;13(6):504-14. doi: 10.1177/1087057108318783. Epub 2008 Jun 19.
3
Second-line salvage treatment of AIDS-associated Pneumocystis jirovecii pneumonia: a case series and systematic review.
J Acquir Immune Defic Syndr. 2008 May 1;48(1):63-7. doi: 10.1097/QAI.0b013e31816de84d.
4
Recent advances in classical and non-classical antifolates as antitumor and antiopportunistic infection agents: Part II.
Anticancer Agents Med Chem. 2008 Feb;8(2):205-31. doi: 10.2174/187152008783497064.
5
Recent advances in classical and non-classical antifolates as antitumor and antiopportunistic infection agents: part I.
Anticancer Agents Med Chem. 2007 Sep;7(5):524-42. doi: 10.2174/187152007781668724.
6
Increasing methotrexate resistance by combination of active-site mutations in human dihydrofolate reductase.
J Mol Biol. 2007 Oct 26;373(3):599-611. doi: 10.1016/j.jmb.2007.07.076. Epub 2007 Aug 17.
7
Dihydrofolate reductase as a target for chemotherapy in parasites.
Curr Pharm Des. 2007;13(6):609-39. doi: 10.2174/138161207780162827.
9
Towards species-specific antifolates.
Curr Med Chem. 2006;13(4):377-98. doi: 10.2174/092986706775527938.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验