Gao Yi, Shao Nan, Zeng Xiao Cheng
Department of Chemistry and Nebraska Center of Materials and Nanoscience, University of NebraskaLincoln, Lincoln, Nebraska 68588, USA.
ACS Nano. 2008 Jul;2(7):1497-503. doi: 10.1021/nn800268w.
A total structural determination of the Au(102)(p-MBA)(44) nanocluster has been recently achieved via successful crystallization of the thiolated-protected gold nanocluster (Jadzinsky et al. Science 2007, 318, 430). The embedded Au(102) cluster may be viewed as a multilayered structure described as Au(54)(penta-star)@Au(38)(ten wings)@Au(10)(two pentagon caps), where the inner Au(54) "penta-star" consists of five twinned Au(20) tetrahedral subunits. To gain more insight into high stability of the Au(102)(p-MBA)(44) nanocluster, we have performed ab initio calculations to study electronic properties of a homologue Au(102)(SCH(3))(44) nanocluster, an Au(102)(SCH(3))(42) nanocluster (with two SCH(3) groups less), and an "effectively isoelectronic" Au(104)(SCH(3))(46) nanocluster with a more symmetric embedded Au(104) structure. Electronic structure calculations suggest that the Au(102)(SCH(3))(44) nanocluster possesses a reasonably large gap (approximately 0.54 eV) between the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO gap), which is comparable to the measured HOMO-LUMO gap (approximately 0.65 eV) of the bare Au(58) cluster. Likewise, the Au(104)(SCH(3))(46) nanocluster has a HOMO-LUMO gap of approximately 0.51 eV, comparable to that of Au(102)(SCH(3))(44) nanocluster. In contrast, the Au(102)(SCH(3))(42) nanocluster has a zero HOMO-LUMO gap. These results confirm that high stability of the Au(102)(p-MBA)(44) nanocluster may be attributed in part to the electronic shell closing of effective 58 (= 102 - 44) valence electrons, as in the case of Au(25)(SCH(2)CH(2)Ph)(18)(-) cluster whose high stability may be attributed to the electronic shell closing of effective 8 (= 26 -18) valence electrons.
最近,通过成功结晶硫醇保护的金纳米团簇,实现了对Au(102)(p-MBA)(44)纳米团簇的完整结构测定(Jadzinsky等人,《科学》,2007年,318卷,430页)。嵌入的Au(102)团簇可被视为一种多层结构,描述为Au(54)(五角星形)@Au(38)(十个翅膀)@Au(10)(两个五角形帽),其中内部的Au(54)“五角星形”由五个孪晶Au(20)四面体亚基组成。为了更深入了解Au(102)(p-MBA)(44)纳米团簇的高稳定性,我们进行了从头算计算,以研究同系物Au(102)(SCH₃)(44)纳米团簇、Au(102)(SCH₃)(42)纳米团簇(少两个SCH₃基团)以及具有更对称嵌入Au(104)结构的“有效等电子”Au(104)(SCH₃)(46)纳米团簇的电子性质。电子结构计算表明,Au(102)(SCH₃)(44)纳米团簇在最高占据分子轨道和最低未占据分子轨道之间具有相当大的能隙(约0.54电子伏特)(HOMO-LUMO能隙),这与裸Au(58)团簇测得的HOMO-LUMO能隙(约0.65电子伏特)相当。同样,Au(104)(SCH₃)(46)纳米团簇的HOMO-LUMO能隙约为0.51电子伏特,与Au(102)(SCH₃)(44)纳米团簇相当。相比之下,Au(102)(SCH₃)(42)纳米团簇的HOMO-LUMO能隙为零。这些结果证实,Au(102)(p-MBA)(44)纳米团簇的高稳定性部分可归因于有效58(=102 - 44)个价电子的电子壳层闭合,就像Au(25)(SCH₂CH₂Ph)(18)⁻团簇的高稳定性可归因于有效8(=26 -