Pita Marcos, Krämer Melina, Zhou Jian, Poghossian Arshak, Schöning Michael J, Fernández Víctor M, Katz Evgeny
Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, USA.
ACS Nano. 2008 Oct 28;2(10):2160-6. doi: 10.1021/nn8004558.
A nanostructured system composed of enzyme-functionalized silica microparticles, ca. 74 microm, and gold-coated magnetic nanoparticles, 18 +/- 3 nm, modified with pH-sensitive organic shells was used to process biochemical signals and transduce the output signal into the changes of the optoelectronic properties of the assembly. The enzymes (glucose oxidase, invertase, esterase) covalently bound to the silica microparticles performed Boolean logic operations AND/OR processing biochemical information received in the form of chemical input signals resulting in changes of the solution pH value. Dissociation state of the organic shells on the gold-coated magnetic nanoparticles was controlled by pH changes generated in situ by the enzyme logic systems. The charge variation on the organic shells upon the reversible protonation/dissociation process resulted in the changes of the gold layer localized surface plasmon resonance energy (LSPR), thus producing optical changes in the system. The proton transfer process allowed the functional coupling of the information processing enzyme systems with the signal transducing gold-coated magnetic nanoparticles providing their cooperative performance. Magnetic properties of the gold-coated magnetic nanoparticles allowed separation of the signal-transducing nanoparticles from the enzyme-modified signal processing silica microparticles. The reversible system operation was achieved by the Reset function, returning the pH value and optical properties of the system to the initial state. This process was biocatalyzed by another immobilized enzyme (urease) activated with a biochemical signal. The studied approach opens the way to novel optical biosensors logically processing multiple biochemical signals and "smart" multisignal responsive materials with logically switchable optical properties.
一种纳米结构系统,由酶功能化的二氧化硅微粒(约74微米)和金包覆的磁性纳米颗粒(18±3纳米)组成,后者用pH敏感的有机壳层进行了修饰,用于处理生化信号,并将输出信号转换为该组件光电特性的变化。共价结合到二氧化硅微粒上的酶(葡萄糖氧化酶、转化酶、酯酶)执行布尔逻辑运算“与”/“或”,处理以化学输入信号形式接收的生化信息,导致溶液pH值发生变化。金包覆磁性纳米颗粒上有机壳层的解离状态由酶逻辑系统原位产生的pH变化控制。在可逆的质子化/解离过程中,有机壳层上的电荷变化导致金层局域表面等离子体共振能量(LSPR)发生变化,从而使系统产生光学变化。质子转移过程实现了信息处理酶系统与信号转导金包覆磁性纳米颗粒的功能耦合,使其具备协同性能。金包覆磁性纳米颗粒的磁性使得信号转导纳米颗粒能够与酶修饰的信号处理二氧化硅微粒分离。通过复位功能实现了系统的可逆操作,使系统的pH值和光学性质恢复到初始状态。这个过程由另一种固定化酶(脲酶)通过生化信号激活进行生物催化。所研究的方法为逻辑处理多个生化信号的新型光学生物传感器以及具有逻辑可切换光学性质的“智能”多信号响应材料开辟了道路。