Suppr超能文献

相似文献

2
Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
J Acoust Soc Am. 2015 Feb;137(2):EL158-64. doi: 10.1121/1.4905892.
3
Mechanical characterization of vocal fold tissue: a review study.
J Voice. 2014 Nov;28(6):657-67. doi: 10.1016/j.jvoice.2014.03.001. Epub 2014 Jul 5.
4
A finite element study on the cause of vocal fold vertical stiffness variation.
J Acoust Soc Am. 2017 Apr;141(4):EL351. doi: 10.1121/1.4978363.
5
Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
J Voice. 2015 May;29(3):265-72. doi: 10.1016/j.jvoice.2014.08.010. Epub 2015 Jan 22.
6
8
Material and shape optimization for multi-layered vocal fold models using transient loadings.
J Acoust Soc Am. 2013 Aug;134(2):1261-70. doi: 10.1121/1.4812253.
10
Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models.
J Biomech. 2009 Oct 16;42(14):2219-25. doi: 10.1016/j.jbiomech.2009.06.039. Epub 2009 Aug 6.

引用本文的文献

1
Synthetic, self-oscillating vocal fold models for voice production researcha).
J Acoust Soc Am. 2024 Aug 1;156(2):1283-1308. doi: 10.1121/10.0028267.
2
Computational Modeling of Voice Production Using Excised Canine Larynx.
J Biomech Eng. 2022 Feb 1;144(2). doi: 10.1115/1.4052226.
5
The Effect of False Vocal Folds on Laryngeal Flow Resistance in a Tubular Three-dimensional Computational Laryngeal Model.
J Voice. 2017 May;31(3):275-281. doi: 10.1016/j.jvoice.2016.04.006. Epub 2016 May 10.
6
Biomechanical analysis of the splenic avulsion mechanism.
Med Biol Eng Comput. 2014 Aug;52(8):629-37. doi: 10.1007/s11517-014-1166-6. Epub 2014 Jun 19.
7
Computational study of effects of tension imbalance on phonation in a three-dimensional tubular larynx model.
J Voice. 2014 Jul;28(4):411-9. doi: 10.1016/j.jvoice.2013.12.016. Epub 2014 Apr 13.
8
9
Subject-specific computational modeling of human phonation.
J Acoust Soc Am. 2014 Mar;135(3):1445-56. doi: 10.1121/1.4864479.

本文引用的文献

3
Refinements in modeling the passive properties of laryngeal soft tissue.
J Appl Physiol (1985). 2007 Jul;103(1):206-19. doi: 10.1152/japplphysiol.00892.2006. Epub 2007 Apr 5.
4
Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
J Biomech. 2007;40(10):2191-8. doi: 10.1016/j.jbiomech.2006.10.030. Epub 2006 Dec 21.
5
Anterior-posterior biphonation in a finite element model of vocal fold vibration.
J Acoust Soc Am. 2006 Sep;120(3):1570-7. doi: 10.1121/1.2221546.
6
Simulation of vocal fold impact pressures with a self-oscillating finite-element model.
J Acoust Soc Am. 2006 Jun;119(6):3987-94. doi: 10.1121/1.2197798.
7
A constitutive model of the human vocal fold cover for fundamental frequency regulation.
J Acoust Soc Am. 2006 Feb;119(2):1050-62. doi: 10.1121/1.2159433.
8
Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
J Voice. 2007 May;21(3):273-84. doi: 10.1016/j.jvoice.2005.12.002. Epub 2006 Feb 28.
9
A three-dimensional model of vocal fold abduction/adduction.
J Acoust Soc Am. 2004 Apr;115(4):1747-59. doi: 10.1121/1.1652033.
10
A contribution to simulating a three-dimensional larynx model using the finite element method.
J Acoust Soc Am. 2003 Nov;114(5):2893-905. doi: 10.1121/1.1619981.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验