Suppr超能文献

单分子分析揭示了大肠杆菌UvrA二聚体中的两个独立DNA结合结构域。

Single-molecule analysis reveals two separate DNA-binding domains in the Escherichia coli UvrA dimer.

作者信息

Wagner Koen, Moolenaar Geri, van Noort John, Goosen Nora

机构信息

Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.

出版信息

Nucleic Acids Res. 2009 Apr;37(6):1962-72. doi: 10.1093/nar/gkp071. Epub 2009 Feb 10.

Abstract

The UvrA protein is the initial damage-recognizing factor in bacterial nucleotide excision repair. Each monomer of the UvrA dimer contains two ATPase sites. Using single-molecule analysis we show that dimerization of UvrA in the presence of ATP is significantly higher than with ADP or nonhydrolyzable ATPgammaS, suggesting that the active UvrA dimer contains a mixture of ADP and ATP. We also show that the UvrA dimer has a high preference of binding the end of a linear DNA fragment, independent on the presence or type of cofactor. Apparently ATP binding or hydrolysis is not needed to discriminate between DNA ends and internal sites. A significant number of complexes could be detected where one UvrA dimer bridges two DNA ends implying the presence of two separate DNA-binding domains, most likely present in each monomer. On DNA containing a site-specific lesion the damage-specific binding is much higher than DNA-end binding, but only in the absence of cofactor or with ATP. With ATPgammaS no discrimination between a DNA end and a DNA damage could be observed. We present a model where damage recognition of UvrA depends on the ability of both UvrA monomers to interact with the DNA flanking the lesion.

摘要

UvrA蛋白是细菌核苷酸切除修复中最初的损伤识别因子。UvrA二聚体的每个单体包含两个ATP酶位点。通过单分子分析,我们发现,在ATP存在的情况下,UvrA的二聚化程度显著高于在ADP或不可水解的ATPγS存在时的情况,这表明活性UvrA二聚体包含ADP和ATP的混合物。我们还表明,UvrA二聚体对线性DNA片段末端具有高度的结合偏好,与辅因子的存在与否或类型无关。显然,区分DNA末端和内部位点不需要ATP结合或水解。可以检测到大量的复合物,其中一个UvrA二聚体桥接两个DNA末端,这意味着存在两个独立的DNA结合结构域,很可能存在于每个单体中。在含有位点特异性损伤的DNA上,损伤特异性结合远高于DNA末端结合,但仅在不存在辅因子或存在ATP的情况下。使用ATPγS时,无法观察到DNA末端与DNA损伤之间的区分。我们提出了一个模型,其中UvrA的损伤识别取决于两个UvrA单体与损伤侧翼DNA相互作用的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a00/2665241/a1ef76b9a207/gkp071f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验