Suppr超能文献

胰高血糖素介导的肝脏和外周组织营养物质处理受损不会因脂质可用性增加而加重。

Glucagon-mediated impairments in hepatic and peripheral tissue nutrient disposal are not aggravated by increased lipid availability.

作者信息

Chen Sheng-Song, Santomango Tammy S, Williams Phillip E, Lacy D Brooks, McGuinness Owen P

机构信息

Department of Molecular Physiology, Vanderbilt University, Nashville, TN 37232-061, USA.

出版信息

Am J Physiol Endocrinol Metab. 2009 May;296(5):E1172-8. doi: 10.1152/ajpendo.90821.2008. Epub 2009 Feb 10.

Abstract

Glucose, fat, and glucagon availability are increased in diabetes. The normal response of the liver to chronic increases in glucose availability is to adapt to become a marked consumer of glucose. Yet this fails to occur in diabetes. The aim was to determine whether increased glucagon and lipid interact to impair the adaptation to increased glucose availability. Chronically catheterized well controlled depancreatized conscious dogs (n = 21) received 3 days of continuous parenteral nutrition (TPN) that was either high in glucose [C; 75% nonprotein calories (NPC)] or in lipid (HL; 75% NPC) in the presence or absence of a low dose (one-third basal) chronic intraportal infusion of glucagon (GN; 0.25 ng.kg(-1).min(-1)). During the 3 days of TPN, all groups received the same insulin algorithm; the total amount of glucose infused (GIR) was varied to maintain isoglycemia ( approximately 120 mg/dl). On day 3 of TPN, hepatic metabolism was assessed. Glucose and insulin levels were similar in all groups. GIR was decreased in HL and C + GN ( approximately 30%) and was further decreased in HL + GN (55%). Net hepatic glucose uptake was decreased approximately 15% in C + GN, and HL and was decreased approximately 50% in HL + GN. Lipid alone or combined with glucagon decreased glucose uptake by peripheral tissues. Despite impairing whole body glucose utilization, HL did not limit whole body energy disposal. In contrast, glucagon suppressed whole body energy disposal irrespective of the diet composition. In summary, failure to appropriately suppress glucagon secretion adds to the dietary fat-induced impairment in both hepatic and peripheral glucose disposal. In addition, unlike increasing the percentage of calories as fat, inappropriate glucagon secretion in the absence of compensatory hyperinsulinemia limits whole body nutrient disposition.

摘要

糖尿病患者体内葡萄糖、脂肪和胰高血糖素的可利用性增加。肝脏对葡萄糖可利用性长期增加的正常反应是适应成为葡萄糖的大量消耗者。然而,这种情况在糖尿病患者中并未发生。本研究旨在确定胰高血糖素和脂质增加是否相互作用,损害对葡萄糖可利用性增加的适应性。将21只长期插管且血糖控制良好的去胰腺清醒犬,在有或无低剂量(基础量的三分之一)慢性门静脉内输注胰高血糖素(GN;0.25 ng·kg⁻¹·min⁻¹)的情况下,接受3天的持续肠外营养(TPN),TPN的葡萄糖含量高[C组;75%非蛋白热量(NPC)]或脂质含量高(HL组;75% NPC)。在TPN的3天期间,所有组接受相同的胰岛素方案;输注的葡萄糖总量(GIR)有所变化以维持血糖水平恒定(约120 mg/dl)。在TPN的第3天,评估肝脏代谢。所有组的葡萄糖和胰岛素水平相似。HL组和C + GN组的GIR降低了约30%,HL + GN组进一步降低了55%。C + GN组、HL组的肝脏葡萄糖净摄取量降低了约15%,HL + GN组降低了约50%。单独的脂质或与胰高血糖素联合使用会降低外周组织对葡萄糖的摄取。尽管HL组损害了全身葡萄糖利用,但并未限制全身能量消耗。相比之下,无论饮食组成如何,胰高血糖素都会抑制全身能量消耗。总之,未能适当抑制胰高血糖素分泌会加重饮食脂肪诱导的肝脏和外周葡萄糖处置受损。此外,与增加脂肪热量百分比不同,在没有代偿性高胰岛素血症的情况下,不适当的胰高血糖素分泌会限制全身营养物质的处置。

相似文献

1
Glucagon-mediated impairments in hepatic and peripheral tissue nutrient disposal are not aggravated by increased lipid availability.
Am J Physiol Endocrinol Metab. 2009 May;296(5):E1172-8. doi: 10.1152/ajpendo.90821.2008. Epub 2009 Feb 10.
2
Hyperinsulinemia compensates for infection-induced impairment in net hepatic glucose uptake during TPN.
Am J Physiol Endocrinol Metab. 2000 Aug;279(2):E235-43. doi: 10.1152/ajpendo.2000.279.2.E235.
3
Continuous low-dose fructose infusion does not reverse glucagon-mediated decrease in hepatic glucose utilization.
Metabolism. 2011 Jun;60(6):867-73. doi: 10.1016/j.metabol.2010.08.006. Epub 2010 Oct 12.
4
Fructose augments infection-impaired net hepatic glucose uptake during TPN administration.
Am J Physiol Endocrinol Metab. 2001 May;280(5):E703-11. doi: 10.1152/ajpendo.2001.280.5.E703.
5
Glucagon chronically impairs hepatic and muscle glucose disposal.
Am J Physiol Endocrinol Metab. 2007 Mar;292(3):E928-35. doi: 10.1152/ajpendo.00063.2006. Epub 2006 Nov 28.
6
Intraportal administration of neuropeptide Y and hepatic glucose metabolism.
Am J Physiol Regul Integr Comp Physiol. 2008 Apr;294(4):R1197-204. doi: 10.1152/ajpregu.00903.2007. Epub 2008 Jan 30.
7
Hepatic and muscle glucose metabolism during total parenteral nutrition: impact of infection.
Am J Physiol. 1998 Nov;275(5):E763-9. doi: 10.1152/ajpendo.1998.275.5.E763.
8
Impact of chronic fructose infusion on hepatic metabolism during TPN administration.
Am J Physiol Endocrinol Metab. 2002 Dec;283(6):E1151-8. doi: 10.1152/ajpendo.00223.2001.
10
Interaction of insulin and prior exercise in control of hepatic metabolism of a glucose load.
Diabetes. 2003 Aug;52(8):1897-903. doi: 10.2337/diabetes.52.8.1897.

引用本文的文献

1
Physiologic action of glucagon on liver glucose metabolism.
Diabetes Obes Metab. 2011 Oct;13 Suppl 1(Suppl 1):118-25. doi: 10.1111/j.1463-1326.2011.01454.x.
2
Glucagon as a critical factor in the pathology of diabetes.
Diabetes. 2011 Feb;60(2):377-80. doi: 10.2337/db10-1594.
3
Continuous low-dose fructose infusion does not reverse glucagon-mediated decrease in hepatic glucose utilization.
Metabolism. 2011 Jun;60(6):867-73. doi: 10.1016/j.metabol.2010.08.006. Epub 2010 Oct 12.

本文引用的文献

4
Glucagon chronically impairs hepatic and muscle glucose disposal.
Am J Physiol Endocrinol Metab. 2007 Mar;292(3):E928-35. doi: 10.1152/ajpendo.00063.2006. Epub 2006 Nov 28.
7
The effect of an acute elevation of NEFA concentrations on glucagon-stimulated hepatic glucose output.
Am J Physiol Endocrinol Metab. 2006 Sep;291(3):E449-59. doi: 10.1152/ajpendo.00043.2006. Epub 2006 Apr 11.
9
Mechanisms for abnormal postprandial glucose metabolism in type 2 diabetes.
Am J Physiol Endocrinol Metab. 2006 Jan;290(1):E67-E77. doi: 10.1152/ajpendo.00529.2004. Epub 2005 Aug 16.
10
Time course of the hepatic adaptation to TPN: interaction with glycogen depletion.
Am J Physiol Endocrinol Metab. 2005 Jan;288(1):E163-70. doi: 10.1152/ajpendo.00192.2004. Epub 2004 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验