Suppr超能文献

人转铁蛋白N叶中甘氨酸65被精氨酸取代的结构和功能后果。

Structural and functional consequences of the substitution of glycine 65 with arginine in the N-lobe of human transferrin.

作者信息

Mason Anne B, Halbrooks Peter J, James Nicholas G, Byrne Shaina L, Grady John K, Chasteen N Dennis, Bobst Cedric E, Kaltashov Igor A, Smith Valerie C, MacGillivray Ross T A, Everse Stephen J

机构信息

Department of Biochemistry, University of Vermont College of Medicine, Burlington, Vermont 05405, USA.

出版信息

Biochemistry. 2009 Mar 10;48(9):1945-53. doi: 10.1021/bi802254x.

Abstract

The G65R mutation in the N-lobe of human transferrin was created to mimic a naturally occurring variant (G394R) found in the homologous C-lobe. Because Gly65 is hydrogen-bonded to the iron-binding ligand Asp63, it comprises part of the second-shell hydrogen bond network surrounding the iron within the metal-binding cleft of the protein. Substitution with an arginine residue at this position disrupts the network, resulting in much more facile removal of iron from the G65R mutant. As shown by UV-vis and EPR spectroscopy, and by kinetic assays measuring the release of iron, the G65R mutant can exist in three forms. Two of the forms (yellow and pink in color) are interconvertible. The yellow form predominates in 1 M bicarbonate; the pink form is generated from the yellow form upon exchange into 1 M HEPES buffer (pH 7.4). The third form (also pink in color) is produced by the addition of Fe(3+)-(nitrilotriacetate)(2) to apo-G65R. Hydrogen-deuterium exchange experiments are consistent with all forms of the G65R mutant assuming a more open conformation. Additionally, mass spectrometric analysis reveals the presence of nitrilotriacetate in the third form. The inability to obtain crystals of the G65R mutant led to development of a novel crystallization strategy in which the G65R/K206E double mutation stabilizes a single closed pink conformer and captures Arg65 in a single position. Collectively, these studies highlight the importance of the hydrogen bond network in the cleft, as well as the inherent flexibility of the N-lobe which, although able to adapt to accommodate the large arginine substitution, exists in multiple conformations.

摘要

在人转铁蛋白的N叶中创建G65R突变,以模拟在同源C叶中发现的天然存在的变体(G394R)。由于甘氨酸65与铁结合配体天冬氨酸63形成氢键,它构成了蛋白质金属结合裂隙内围绕铁的第二壳层氢键网络的一部分。在该位置用精氨酸残基取代会破坏该网络,导致从G65R突变体中更容易去除铁。如紫外可见光谱和电子顺磁共振光谱以及测量铁释放的动力学测定所示,G65R突变体可以以三种形式存在。其中两种形式(黄色和粉红色)是可相互转化的。黄色形式在1 M碳酸氢盐中占主导;粉红色形式是在交换到1 M HEPES缓冲液(pH 7.4)中时从黄色形式产生的。第三种形式(也是粉红色)是通过向脱辅基G65R中添加Fe(3+)-(次氮基三乙酸)(2)产生的。氢-氘交换实验与G65R突变体的所有形式都假设为更开放的构象一致。此外,质谱分析揭示了第三种形式中存在次氮基三乙酸。无法获得G65R突变体的晶体导致开发了一种新的结晶策略,其中G65R/K206E双突变稳定了单一的封闭粉红色构象体,并将精氨酸65捕获在单一位置。总的来说,这些研究突出了裂隙中氢键网络的重要性,以及N叶固有的灵活性,尽管它能够适应容纳大的精氨酸取代,但存在多种构象。

相似文献

9
The position of arginine 124 controls the rate of iron release from the N-lobe of human serum transferrin. A structural study.
J Biol Chem. 2003 Feb 21;278(8):6027-33. doi: 10.1074/jbc.M210349200. Epub 2002 Nov 27.
10
Existence of a noncanonical state of iron-bound transferrin at endosomal pH revealed by hydrogen exchange and mass spectrometry.
J Mol Biol. 2009 May 22;388(5):954-67. doi: 10.1016/j.jmb.2009.03.044. Epub 2009 Mar 24.

引用本文的文献

1
Exploring the Fe(III) binding sites of human serum transferrin with EPR at 275 GHz.
J Biol Inorg Chem. 2015 Apr;20(3):487-96. doi: 10.1007/s00775-014-1229-z. Epub 2014 Dec 24.
2
Molecular mechanisms of disease-causing missense mutations.
J Mol Biol. 2013 Nov 1;425(21):3919-36. doi: 10.1016/j.jmb.2013.07.014. Epub 2013 Jul 16.
4
Transferrin as a model system for method development to study structure, dynamics and interactions of metalloproteins using mass spectrometry.
Biochim Biophys Acta. 2012 Mar;1820(3):417-26. doi: 10.1016/j.bbagen.2011.06.019. Epub 2011 Jun 25.
5
The unique kinetics of iron release from transferrin: the role of receptor, lobe-lobe interactions, and salt at endosomal pH.
J Mol Biol. 2010 Feb 12;396(1):130-40. doi: 10.1016/j.jmb.2009.11.023. Epub 2009 Nov 13.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
3
Viral infection and iron metabolism.
Nat Rev Microbiol. 2008 Jul;6(7):541-52. doi: 10.1038/nrmicro1930.
4
Model building and refinement practice.
Methods Enzymol. 1997;277:208-30. doi: 10.1016/s0076-6879(97)77013-7.
5
Intrinsic fluorescence reports a global conformational change in the N-lobe of human serum transferrin following iron release.
Biochemistry. 2007 Sep 18;46(37):10603-11. doi: 10.1021/bi602425c. Epub 2007 Aug 21.
7
Investigation of structure, dynamics and function of metalloproteins with electrospray ionization mass spectrometry.
Anal Bioanal Chem. 2006 Oct;386(3):472-81. doi: 10.1007/s00216-006-0636-6. Epub 2006 Aug 25.
8
The crystal structure of iron-free human serum transferrin provides insight into inter-lobe communication and receptor binding.
J Biol Chem. 2006 Aug 25;281(34):24934-44. doi: 10.1074/jbc.M604592200. Epub 2006 Jun 22.
10
Indirect detection of protein-metal binding: interaction of serum transferrin with In3+ and Bi3+.
J Am Soc Mass Spectrom. 2004 Nov;15(11):1658-64. doi: 10.1016/j.jasms.2004.08.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验