Suppr超能文献

Progesterone enhances target gene transcription by receptor free of heat shock proteins hsp90, hsp56, and hsp70.

作者信息

Bagchi M K, Tsai S Y, Tsai M J, O'Malley B W

机构信息

Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030.

出版信息

Mol Cell Biol. 1991 Oct;11(10):4998-5004. doi: 10.1128/mcb.11.10.4998-5004.1991.

Abstract

Steroid receptors regulate transcription of target genes in vivo and in vitro in a steroid hormone-dependent manner. Unoccupied progesterone receptor exists in the low-salt homogenates of target cells as a functionally inactive 8 to 10S complex with several nonreceptor components such as two molecules of 90-kDa heat shock protein (hsp90), a 70-kDa heat shock protein (hsp70), and a 56-kDa heat shock protein (hsp56). Ligand-induced dissociation of receptor-associated proteins such as hsp90 has been proposed as the mechanism of receptor activation. Nevertheless, it has not been established whether, beyond release of heat shock proteins, the steroidal ligand plays a role in modulating receptor activity. To examine whether the release of these nonreceptor proteins from receptor complex results in a constitutively active receptor, we isolated an unliganded receptor form essentially free of hsp90, hsp70, and hsp56. Using a recently developed steroid hormone-responsive cell-free transcription system, we demonstrate for the first time that the dissociation of heat shock proteins is not sufficient to generate a functionally active receptor. This purified receptor still requires hormone for high-affinity binding to a progesterone response element and for efficient transcriptional activation of a target gene. When an antiprogestin, Ru486, is bound to the receptor, it fails to promote efficient transcription. We propose that in the cell, in addition to the release of receptor-associated inhibitory proteins, a distinct hormone-mediated activation event must precede efficient gene activation.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9ca/361487/62786fb3f660/molcellb00034-0206-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验