Tamanini Emiliano, Rigby Stephen E J, Motevalli Majid, Todd Matthew H, Watkinson Michael
School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
Chemistry. 2009;15(15):3720-8. doi: 10.1002/chem.200802425.
Chemical sensing is a mature field, and many effective sensors for small anions and cations have been devised. Metal complexes have been used widely for this purpose, but there are fewer reports of their use in the detection of organic and biological analytes. To date metal complexes have been used in sensing via the direct displacement of a pre-existing ligand by an analyte, or by an adventitious complementarity between the complex and analyte. These strategies do not permit a general approach to the sensing of biological molecules with metal complexes because of the demands to engineer molecular recognition into the complex architecture. We describe a fundamentally new approach to this field-the "allosteric scorpionate" metal complex. The binding partner of a biological analyte is attached to a scorpionate ligand on a metal complex, remote from the metal centre. Binding of the analyte causes a change in the primary coordination sphere at the metal, thereby revealing the presence of the biological molecule. We show that azamacrocyclic complexes with a triazole scorpion ligand may be easily assembled with the [3+2] Huisgens 'click' cycloaddition. We demonstrate the synthesis of a biotin-functionalised cyclam derivative using this methodology. This, and our previously communicated zinc sensor, are to the best of our knowledge the first examples of a triazole being employed as a scorpion ligand on an azamacrocycle. Coordination by the triazole to the metal is perturbed by the binding of avidin to the pendant ligand. This event can be sensitively detected with EPR spectroscopy, and the details of the coordination change probed with ENDOR spectroscopy, confirming the loss of the axial triazole nitrogen donor upon binding to avidin. This represents the first metal complex where remote, 'allosteric' coordination of an analyte has been shown to cause a change in the primary coordination sphere of the metal. Since the synthesis is modular and straightforward, other biological ligands may easily be introduced, and the associated binding events may be probed.
化学传感是一个成熟的领域,已经设计出了许多用于检测小阴离子和阳离子的有效传感器。金属配合物已被广泛用于此目的,但它们用于检测有机和生物分析物的报道较少。迄今为止,金属配合物已通过分析物直接取代预先存在的配体,或通过配合物与分析物之间偶然的互补性用于传感。由于需要将分子识别设计到配合物结构中,这些策略不允许用金属配合物对生物分子进行一般的传感方法。我们描述了一种针对该领域的全新方法——“变构蝎形”金属配合物。生物分析物的结合伴侣连接到金属配合物上远离金属中心的蝎形配体上。分析物的结合会导致金属处一级配位球的变化,从而揭示生物分子的存在。我们表明,具有三唑蝎形配体的氮杂大环配合物可以通过[3+2]惠根斯“点击”环加成轻松组装。我们展示了使用这种方法合成生物素功能化的环胺衍生物。据我们所知,这以及我们之前报道的锌传感器是三唑用作氮杂大环上蝎形配体的首批实例。三唑与金属的配位会因抗生物素蛋白与侧链配体的结合而受到干扰。这一事件可以通过电子顺磁共振光谱灵敏地检测到,并用电子核双共振光谱探测配位变化的细节,证实与抗生物素蛋白结合后轴向三唑氮供体的损失。这代表了第一个金属配合物,其中已证明分析物的远程“变构”配位会导致金属一级配位球的变化。由于合成是模块化且直接的,其他生物配体可以很容易地引入,并且可以探测相关的结合事件。