Suppr超能文献

基于严格积分筛选标准的线性标度原子轨道二阶莫勒-普莱斯特定理微扰理论。

Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria.

作者信息

Doser Bernd, Lambrecht Daniel S, Kussmann Jörg, Ochsenfeld Christian

机构信息

Theoretische Chemie, Universität Tübingen, Germany.

出版信息

J Chem Phys. 2009 Feb 14;130(6):064107. doi: 10.1063/1.3072903.

Abstract

A Laplace-transformed second-order Moller-Plesset perturbation theory (MP2) method is presented, which allows to achieve linear scaling of the computational effort with molecular size for electronically local structures. Also for systems with a delocalized electronic structure, a cubic or even quadratic scaling behavior is achieved. Numerically significant contributions to the atomic orbital (AO)-MP2 energy are preselected using the so-called multipole-based integral estimates (MBIE) introduced earlier by us [J. Chem. Phys. 123, 184102 (2005)]. Since MBIE provides rigorous upper bounds, numerical accuracy is fully controlled and the exact MP2 result is attained. While the choice of thresholds for a specific accuracy is only weakly dependent upon the molecular system, our AO-MP2 scheme offers the possibility for incremental thresholding: for only little additional computational expense, the numerical accuracy can be systematically converged. We illustrate this dependence upon numerical thresholds for the calculation of intermolecular interaction energies for the S22 test set. The efficiency and accuracy of our AO-MP2 method is demonstrated for linear alkanes, stacked DNA base pairs, and carbon nanotubes: e.g., for DNA systems the crossover toward conventional MP2 schemes occurs between one and two base pairs. In this way, it is for the first time possible to compute wave function-based correlation energies for systems containing more than 1000 atoms with 10 000 basis functions as illustrated for a 16 base pair DNA system on a single-core computer, where no empirical restrictions are introduced and numerical accuracy is fully preserved.

摘要

本文提出了一种拉普拉斯变换的二阶莫勒-普列塞特微扰理论(MP2)方法,该方法能够实现电子局域结构的计算量随分子大小呈线性缩放。对于具有离域电子结构的体系,也能实现三次甚至二次缩放行为。利用我们之前提出的所谓基于多极的积分估计(MBIE)[《化学物理杂志》123, 184102 (2005)],预先选择对原子轨道(AO)-MP2能量有数值显著贡献的部分。由于MBIE提供了严格的上限,数值精度得到了完全控制,并能得到精确的MP2结果。虽然特定精度阈值的选择仅微弱地依赖于分子体系,但我们的AO-MP2方案提供了增量阈值设定的可能性:只需少量额外的计算开销,数值精度就能系统地收敛。我们通过S22测试集计算分子间相互作用能来说明这种对数值阈值的依赖性。我们的AO-MP2方法的效率和准确性在直链烷烃、堆叠的DNA碱基对和碳纳米管中得到了证明:例如,对于DNA体系,向传统MP2方案的转变发生在一到两个碱基对之间。通过这种方式,首次有可能在不引入经验限制且完全保持数值精度的情况下,在单核计算机上计算包含1000多个原子和10000个基函数的体系基于波函数的相关能,如一个16碱基对的DNA体系所示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验