Suppr超能文献

一种研究四肢和手指机械能力的数学方法。

A mathematical approach to the mechanical capabilities of limbs and fingers.

作者信息

Valero-Cuevas Francisco J

机构信息

Department of Biomedical Engineering, The University of Southern California, 3710 McClintock Ave, Los Angeles, CA 90089-2905, USA.

出版信息

Adv Exp Med Biol. 2009;629:619-33. doi: 10.1007/978-0-387-77064-2_33.

Abstract

Neuromuscular function is the interaction between the nervous system and the physical world. Limbs and fingers are, therefore, the ultimate mechanical filters between the motor commands that the nervous system issues and the physical actions that result. In this chapter we present a mathematical approach to understanding how their anatomy (i.e., physical structure) defines their mechanical capabilities. We call them "mechanical filters" because they attenuate, amplify, and transform neural signals into mechanical output. We explicitly distinguish between limbs and fingers because their subtle anatomical differences have profound effects on their mechanical properties. Our main message is that many aspects of neuromuscular function such as co-contraction, posture selection, muscle redundancy, optimality of motor command, are fundamentally affected (if not defined) by the physical structure of limbs and fingers. We attempt to present the fundamental filtering properties of limbs and fingers in a unified manner to allow for a direct and useful application of powerful mathematical concepts to the study of neuromuscular function. Every researcher of motor control is well advised to consider these filtering properties to properly understand the co-evolution and synergistic interactions between brain and body. At the end of the day, every inquiry in neuromuscular function can be reduced to the fundamental question whether and how the nervous system can perform the necessary sensorimotor functions to exploit and reach the mechanical capabilities of limbs and fingers.

摘要

神经肌肉功能是神经系统与现实世界之间的相互作用。因此,四肢和手指是神经系统发出的运动指令与最终产生的身体动作之间的终极机械滤波器。在本章中,我们将介绍一种数学方法,以理解它们的解剖结构(即物理结构)如何定义其机械能力。我们称它们为“机械滤波器”,因为它们会衰减、放大神经信号,并将其转化为机械输出。我们明确区分四肢和手指,因为它们细微的解剖差异对其机械特性有着深远影响。我们的主要观点是,神经肌肉功能的许多方面,如共同收缩、姿势选择、肌肉冗余、运动指令的最优性等,从根本上受到(如果不是由其定义的话)四肢和手指的物理结构的影响。我们试图以统一的方式呈现四肢和手指的基本滤波特性,以便将强大的数学概念直接且有效地应用于神经肌肉功能的研究。强烈建议每一位运动控制领域的研究人员考虑这些滤波特性,以便正确理解大脑与身体之间的共同进化和协同相互作用。归根结底,神经肌肉功能的每一项研究都可以归结为一个基本问题,即神经系统能否以及如何执行必要的感觉运动功能,以利用并发挥四肢和手指的机械能力。

相似文献

1
A mathematical approach to the mechanical capabilities of limbs and fingers.
Adv Exp Med Biol. 2009;629:619-33. doi: 10.1007/978-0-387-77064-2_33.
2
Muscle mechanics and neuromuscular control.
J Biomech. 2003 Jul;36(7):1031-8. doi: 10.1016/s0021-9290(03)00036-8.
3
Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
Neuroscience. 2005;133(1):29-49. doi: 10.1016/j.neuroscience.2004.09.048. Epub 2005 Apr 22.
4
Optimality in neuromuscular systems.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:4510-6. doi: 10.1109/IEMBS.2010.5626055.
5
The internal model and the leading joint hypothesis: implications for control of multi-joint movements.
Exp Brain Res. 2005 Sep;166(1):1-16. doi: 10.1007/s00221-005-2339-1. Epub 2005 Aug 13.
6
Muscle redundancy does not imply robustness to muscle dysfunction.
J Biomech. 2011 Apr 29;44(7):1264-70. doi: 10.1016/j.jbiomech.2011.02.014. Epub 2011 Mar 21.
7
Macroscopic modeling and identification of the human neuromuscular network.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:99-105. doi: 10.1109/IEMBS.2006.260638.
8
Structured variability of muscle activations supports the minimal intervention principle of motor control.
J Neurophysiol. 2009 Jul;102(1):59-68. doi: 10.1152/jn.90324.2008. Epub 2009 Apr 15.
9
An integrative approach to the biomechanical function and neuromuscular control of the fingers.
J Biomech. 2005 Apr;38(4):673-84. doi: 10.1016/j.jbiomech.2004.04.006.

引用本文的文献

1
Flight power muscles have a coordinated, causal role in controlling hawkmoth pitch turns.
J Exp Biol. 2024 Dec 15;227(24). doi: 10.1242/jeb.246840. Epub 2024 Dec 18.
2
The role of the deep cervical extensor muscles in multi-directional isometric neck strength.
J Biomech. 2024 May;168:112096. doi: 10.1016/j.jbiomech.2024.112096. Epub 2024 Apr 16.
3
Optimization of modularity during development to simplify walking control across multiple steps.
Front Neural Circuits. 2024 Jan 26;17:1340298. doi: 10.3389/fncir.2023.1340298. eCollection 2023.
4
Comparison of strength profile representations using musculoskeletal models and their applications in robotics.
Front Robot AI. 2024 Jan 9;10:1265635. doi: 10.3389/frobt.2023.1265635. eCollection 2023.
5
Generating variability from motor primitives during infant locomotor development.
Elife. 2023 Jul 31;12:e87463. doi: 10.7554/eLife.87463.
6
Self-configuring feedback loops for sensorimotor control.
Elife. 2022 Nov 14;11:e77216. doi: 10.7554/eLife.77216.
7
Modulation of finger muscle activation patterns across postures is coordinated across all muscle groups.
J Neurophysiol. 2020 Aug 1;124(2):330-341. doi: 10.1152/jn.00088.2020. Epub 2020 Jun 24.
8
When 90% of the variance is not enough: residual EMG from muscle synergy extraction influences task performance.
J Neurophysiol. 2020 Jun 1;123(6):2180-2190. doi: 10.1152/jn.00472.2019. Epub 2020 Apr 8.
9
Experimentally quantifying the feasible torque space of the human shoulder.
J Electromyogr Kinesiol. 2022 Feb;62:102313. doi: 10.1016/j.jelekin.2019.05.014. Epub 2019 May 23.
10
Modeling musculoskeletal kinematic and dynamic redundancy using null space projection.
PLoS One. 2019 Jan 2;14(1):e0209171. doi: 10.1371/journal.pone.0209171. eCollection 2019.

本文引用的文献

1
Hemiplegic limb synergies in stroke patients.
Am J Phys Med Rehabil. 2006 Feb;85(2):112-9. doi: 10.1097/01.phm.0000197587.78140.17.
2
Matrix factorization algorithms for the identification of muscle synergies: evaluation on simulated and experimental data sets.
J Neurophysiol. 2006 Apr;95(4):2199-212. doi: 10.1152/jn.00222.2005. Epub 2006 Jan 4.
4
An integrative approach to the biomechanical function and neuromuscular control of the fingers.
J Biomech. 2005 Apr;38(4):673-84. doi: 10.1016/j.jbiomech.2004.04.006.
5
Shared and specific muscle synergies in natural motor behaviors.
Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3076-81. doi: 10.1073/pnas.0500199102. Epub 2005 Feb 11.
6
The fundamental thumb-tip force vectors produced by the muscles of the thumb.
J Orthop Res. 2004 Mar;22(2):306-12. doi: 10.1016/j.orthres.2003.08.001.
9
People with cerebral palsy: effects of and perspectives for therapy.
Neural Plast. 2001;8(1-2):51-69. doi: 10.1155/NP.2001.51.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验