Syahir Amir, Tomizaki Kin-Ya, Kajikawa Kotaro, Mihara Hisakazu
Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
Langmuir. 2009 Apr 9;25(6):3667-74. doi: 10.1021/la8028275.
Label-free protein detecting chip technology has encouraged a number of discoveries, as it is a powerful analytical tool in the postgenomic era. In particular, we have focused on a unique characteristic of anomalous reflection of gold (AR) as a new class of label-free detection method for a protein chip system. In this paper, in order to improve the sensitivity of detection of biomolecular interactions by the AR method, we have constructed three-dimensional (3D) nanostructures on gold surfaces with a series of well-defined structures of poly(amidoamine) dendrimers (PAMAMs) from generation 2 to 4 (G2, G3, and G4) tethering biotin moieties as capturing agents for avidin and antibiotin IgG. Comparison of features of such 3D nanostructured surfaces with a diamine-modified flat-like surface revealed a 2-fold increase in the amount of avidin for 3D surfaces relative to the flat surface, and surface-assisted nonspecific interactions were significantly suppressed. We thus obtained 91% coverage for avidin detection on the PAMAM G4-modified surface, indicating a theoretically maximum attainable absorption considering a hexagonal-packed arrangement as a saturated monomolecular layer. In the antibiotin IgG assay, the PAMAM G4-modified surface clearly improved the amount of proteins captured compared to that for the flat surface, indicating that an appropriate density of capturing agents played a more important role in the interaction of larger molecular-sized proteins such as antibiotin IgG, which requires more space for interaction than the medium-sized avidin. These findings should assist in the development of a simple and practical tool for high-throughput protein detection, particularly with the AR method.
无标记蛋白质检测芯片技术促成了许多新发现,因为它是后基因组时代一种强大的分析工具。特别地,我们聚焦于金的异常反射这一独特特性,将其作为蛋白质芯片系统一类新型的无标记检测方法。在本文中,为了提高采用异常反射方法检测生物分子相互作用的灵敏度,我们在金表面构建了三维(3D)纳米结构,这些结构由第2代至第4代(G2、G3和G4)具有一系列明确结构的聚(酰胺胺)树枝状大分子(PAMAM)组成,这些树枝状大分子连接生物素部分作为抗生物素蛋白和抗生物素IgG的捕获剂。将这种3D纳米结构表面与二胺修饰的扁平状表面的特征进行比较,结果显示相对于扁平表面,3D表面上抗生物素蛋白的量增加了两倍,并且表面辅助的非特异性相互作用得到了显著抑制。因此,我们在PAMAM G4修饰的表面上实现了91%的抗生物素蛋白检测覆盖率,这表明考虑到作为饱和单分子层的六方堆积排列,理论上可达到的最大吸收率。在抗生物素IgG检测中,与扁平表面相比,PAMAM G4修饰的表面明显提高了捕获的蛋白量,这表明捕获剂的适当密度在与更大分子尺寸的蛋白质(如抗生物素IgG)的相互作用中发挥了更重要的作用,与中等尺寸的抗生物素蛋白相比,抗生物素IgG需要更多的相互作用空间。这些发现应有助于开发一种简单实用的高通量蛋白质检测工具,特别是采用异常反射方法的工具。